W¹,∞-INTERIOR ESTIMATES FOR FINITE ELEMENT METHOD ON REGULAR MESH*

OHEN CHUAN-MIAO (陈传森)

(Xiangtan University, Hunan, China)

Abstract

For a large class of piecewise polynomial subspaces S^h defined on the regular mesh, $W^{1,-}$ -interior estimate $\|u_h\|_{1,-,\Omega_0} \leqslant c \|u_h\|_{-s,\Omega_1}$, $u_h \in S^h(\Omega_1)$ satisfying the interior Ritz equation $B(u_h, \varphi) = 0$, $\forall \varphi \in \mathring{S}^h(\Omega_1)$, $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$, is proved. For the finite element approximation u_h (of degree r-1) to u_r , we have $W^{1,-}$ -interior error estimate $\|u-u_h\|_{1,-,\Omega_0} \leqslant ch^{r-1}(\|u\|_{r,-,\Omega_1} + \|u\|_{1,\Omega})$. If the triangulation is strongly regular in Ω_1 and r=2 we obtain $W^{1,-}$ -interior superconvergence

$$\max_{x \in X} |D(u - \overline{u}_h)(x)| \leq ch^2 (|\ln h| \|u\|_{3, -, Q_1} + \|u\|_{2, Q}).$$

§ 1. Introduction

Let Ω be an *n*-dimensional bounded domain with the boundary $\partial\Omega$. Denote the norm and semi-norm of the Sobolev space $W^{k,p}(\Omega)$, $1 \le p \le \infty$, respectively, by

$$\|u\|_{k,\,p,\,\Omega} = \sum_{|\alpha| \leq k} \|D^{\alpha}u\|_{L^{p}(\Omega)}, \, |u|_{k,\,p,\,\Omega} = \sum_{|\alpha| = k} \|D^{\alpha}u\|_{L^{p}(\Omega)}.$$

We simply write $W^{k,2} = H^k$, $||u||_{k,2,\Omega} = ||u||_{k,\Omega}$ if p=2.

We consider the elliptic boundary value problem

$$\begin{cases}
Lu = -D_{j}(a_{ij}D_{i}u + a_{0j}u) + a_{i0}D_{i}u + a_{00}u = f, & \text{in } \Omega \\
u = 0, & \text{on } \partial\Omega
\end{cases} \tag{1.1}$$

and a bilinear form

$$B(u, v) = \int_{\Omega} \sum_{i,j=0}^{n} a_{ij} D_{i} u D_{j} v \, dx, \quad D_{0} u = u,$$

where the coefficients a_{ij} are suitably smooth in $\overline{\Omega}$. Suppose that

$$B(v, v) \ge c \|v\|_{1, 0}^2, \quad c > 0, \ \forall v \in \mathring{H}^1(\Omega).$$
 (1.2)

On a regular (i. e. quasi-uniform) mesh-domain Ω_k of Ω we give a finite dimensional subspace $S^k \subset C(\overline{\Omega})$, consisting of piecewise polynomials of degree r-1, and

$$\mathring{S}^h(\Omega_1) = \{ \varphi \in S^h(\Omega) \mid \text{supp } \varphi \subseteq \overline{\Omega}_1 \}, \quad \Omega_1 \subset \subset \Omega_1$$

An approximate solution $u_{k} \in S^{h}(\Omega)$ to u satisfies the interior Ritz equation

$$B(u-u_h, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(\Omega_1). \tag{1.3}$$

An important special case occurs when Lu=0. Then $u_h \in S^h(\Omega)$ satisfies $u_h \in S^h(\Omega)$

$$B(u_h, \varphi) = 0, \quad \forall \varphi \in \mathring{S}^h(\Omega_1).$$
 (1.4)

Such u_h will play a central role in deriving the interior error estimates. For the regular mesh in Ω_1 , J. Nitsche and A. Schatz^[1] first proved L^2 -interior estimate

^{*} Received November 15, 1983.

$$||u_h||_{1,\Omega_0} \leqslant c ||u_h||_{-s,\Omega_1}, \quad \Omega_0 \subset \subset \Omega_1, \tag{1.5}$$

where $s \ge 0$ is an integer, arbitrary but fixed, and $||u_h||_{-s,p}$ negative norm. For the uniform mesh, J. Bramble, J. Nitsche and A. Schatz^[2] later proved L^{∞} -interior estimate

$$||u_h||_{0,\infty,\Omega_{\bullet}} \leq c ||u_h||_{-s,\Omega_1}.$$
 (1.6)

For the regular mesh, A. Schatz and L. Wahlbin^[8] also proved it by the technique of estimating derivatives on annuluses. The present paper extends these results and proves the following

Fundamental Lemma. Suppose that the triangulation is regular in $\Omega_1 \subset \subset \Omega$, and $u_h \in S^h$ satisfies (1.3). Then

$$||u_h||_{1,\infty,\Omega_0} \leq c ||u_h||_{-s,\Omega_1}.$$
 (1.7)

Using the lemma, we may derive $W^{1,\infty}$ -interior error estimate (Theorem 1) and $W^{1,\infty}$ -interior superconvergence (Theorem 2) for the general problem (1.1).

§ 2. Some Assumptions

[7] and [8] discussed a priori estimate and the solvability of solution $u \in W^{2,p}(\Omega)$, 1 , for the problem (1.1). We obtained

Lemma 1⁽⁹⁾. Let $\Omega \in C^{1,1}$, $a_{ij} \in W^{1,\infty}(\Omega)$, $i+j \neq 0$, $a_{00} \in L^{\infty}(\Omega)$, $f \in L^{p}(\Omega)$, $1 , and <math>u \in W^{2,p}(\Omega)$ is a unique solution of (1.1). Then

$$||u||_{2,p,\Omega} \leq c\widetilde{p}^{\lambda} ||f||_{0,p,\Omega},$$
 (2.1)

where $\tilde{p} = \max(p, p')$, p' = p/(p-1), and the constants λ and c are independent of p and f.

Let $\Omega = G$ be a sphere with radius R suitably small. Suppose that the Green function g(x, y) for (1.1) exists such that

$$|D^{\alpha}g(x, y)| \le \begin{cases} c(|\ln|x-y||+1), & n=2 \text{ and } \alpha=0, \\ c|x-y|^{2-n-|\alpha|}, & n>2 \text{ or } |\alpha|=1. \end{cases}$$
 (2.2)

By the Green function g(x, y), the solution u of (1.1) can be expressed by

$$u(x) = \int_{\mathcal{G}} g(x, y) f(y) dy. \tag{2.3}$$

If $1 \leq q < n/(n-1)$, we have

$$|u|_{1,q,q} \leq c \left(\int_{a} \int_{a} |x-y|^{(1-n)q} |f(y)| dx dy \right)^{1/q} \left(\int_{a} |f(y)| dy \right)^{1/q'} \leq c \|f\|_{0,1,q}.$$

$$(2.4)$$

We now turn to the finite dimensional subspace $S^h(\Omega)^{(1)}$ and make the following assumptions (for $1 \le p \le \infty$):

A1. For each $u \in W^{1,p}(G)$, $1 \le t \le r$, there exists a $\varphi \in S^h(\Omega_1)$ such that $\|u - \varphi\|_{s,p,G} \le ch^{t-s} \|u\|_{t,p,G}$, s = 0, 1. (2.5)

A2. Let $\omega \in C_0^{\infty}(G_0)$ and $u_h \in S^h(G)$, $G_0 \subset \subset G \subset \Omega$. Then there exists $\varphi \in \mathring{S}^h(G)$ such that

$$\|\omega u_h - \varphi\|_{1,p,G} \leq ch \|u_h\|_{1,p,G}. \tag{2.6}$$

A3. For each $h \in (0, 1]$, there exists a mesh-domain G_1 , $G_0 \subset G_1 \subset G$, such that, for all $\varphi \in S^h(\Omega_1)$,