ON THE CONVERGENCE OF QUASI-CONFORMING ELEMENTS FOR LINEAR ELASTICITY PROBLEMS*

WANG MING (王 雪) ZHANG HONG-QING (张海庆)
(Department of Applied Mathematics, Dalian Institute of Technology, Dalian, China)

Abstract

Continuing the work in [1, 2], we discuss the convergence conditions and the error estimates of quasi-conforming elements for linear elasticity problems. Some results about curved elements for second-order boundary value problems are also given.

§ 1. Introduction

The quasi-conforming element method is very efficient and successful for elliptic problems (see [1—4]). The mathematical foundation of this method has been established in [1, 2], and several plate bending elements have been shown to be convergent. In the present paper, we mainly discuss the convergence conditions of quasi-conforming elements for linear elasticity problems and their error estimates. In addition we give some results about curved elements for second-order boundary value problems.

Let Ω be a bounded connected domain in R^n with Lipschitz-continuous boundary $\partial\Omega$. For each $v=(v_1, v_2, \dots, v_n)$ in $(H^1(\Omega))^n$, we set

$$\begin{cases} s_{ij}(v) = s_{ji}(v) = (\partial_i v_j + \partial_j v_i)/2, & 1 \leq i, j \leq n, \\ \sigma_{ij}(v) = \sigma_{ji}(v) = \lambda \left(\sum_{i=1}^n s_{ii}(v)\right) \delta_{ij} + 2\mu s_{ij}(v), & 1 \leq i, j \leq n, \end{cases}$$

$$(1.1)$$

where δ_{ij} is Kronecker's symbol, and λ and μ are two positive constants. Consider the boundary value problem of linear elasticity:

$$\begin{cases} -\sum_{j=1}^{n} \partial_{j} \sigma_{ij}(u) = f_{i}, & i = 1, \dots, n, \text{ in } \Omega, \\ u|_{\partial \Omega} = 0. \end{cases}$$

$$(1.2)$$

In order to discuss this problem, we need some notations. Let $H = \{A = (V_j, E_{ij}) | V_j, E_{ij} \in L^2(\Omega), 1 \le i, j \le n$ with $E_{ij} = E_{ij}\}$. For $v = (v_1, \dots, v_n)$ in $(H^1(\Omega))^n$, define $Tv = (v_j, s_{ij}(v))$. Then $T(H^1(\Omega))^n$ is a subspace of H. And for each A in H, define

$$\sigma_{ij}(A) = \sigma_{ij}(A) = \lambda \left(\sum_{i=1}^{n} E_{ii}\right) \delta_{ij} + 2\mu E_{ij}, \quad 1 \leq i, j \leq n. \tag{1.3}$$

We define the bilinear form $a(\cdot, \cdot)$ and the linear form $f(\cdot)$ on space H as

^{*} Beceived December 29, 1984.

follows:

$$a(\Lambda, \overline{\Lambda}) = \sum_{i,j=1}^{n} \int_{\Omega} \sigma_{ij}(\Lambda) \overline{E}_{ij} dx, \quad \forall \Lambda, \overline{\Lambda} \in H,$$
 (1.4)

$$f(\Lambda) = \int_{\Omega} \sum_{i=1}^{n} f_i V_i dx, \quad \forall \Lambda \in H.$$
 (1.5)

Then problem (1.2) is equivalent to the following variational problem:

$$u \in (H_0^1(\Omega))^n$$
, $a(Tu, Tv) = f(Tv)$, $\forall v \in (H_0^1(\Omega))^n$. (1.6)

Let $\{U_k\}$ be a family of finite dimensional subspaces in H for parameter h with h>0 and $h\to 0$. According to [1, 2], the finite element approximation with multiple sets of functions to problem (1.6) is the following problem

$$\Lambda_{\mathbf{A}}^* \in U_{\mathbf{A}}, \ \alpha(\Lambda_{\mathbf{A}}^*, \Lambda_{\mathbf{A}}) = f(\Lambda_{\mathbf{A}}), \quad \Lambda_{\mathbf{A}} \in U_{\mathbf{A}}.$$
 (1.7)

The work in this paper is mainly devoted to the following subjects: i) the method for constructing spaces U_{k} using quasi-conforming elements, ii) the existence, uniqueness and convergence of the solution of problem (1.7).

§ 2. Quasi-Conforming Element Method

In this section we discuss how to construct spaces U_h by the quasi-conforming element method. From now on, we assume that Ω is a polyhedroid domain in R^* , and let K_h be a finite subdivision of Ω for each h with the properties K1 and K2:

K1. For every element K in K_k , K is an n-simplex (or n-parallelotope) and

$$\bigcup_{K\in K_{\bullet}}=\overline{\Omega}.$$

K2. For every two different elements K and K' in K_k , $K \cap K'$ is an empty set or a common face of K and $K'^{(1)}$.

Let t be a positive number. For any n-simplex (or n-parallelotope) K, we give two linear interpolation operators $\Pi_K \colon H^t(K) \to L^2(K)$ and $\Pi_{2K} \colon H^t(K) \to L^2(\partial K)$ and some finite dimensional spaces consisting of polynomials, say N_K^{ij} , $1 \le i$, $j \le n$, with $N_K^{ij} = N_K^{ij}$. For each $v = (v_1, \dots, v_n)$ in $(H^t(K))^n$, we define $E_K^{ij}(v)$ in N_K^{ij} , $1 \le i$, $j \le n$, by the following equations:

$$2\int_{K} pE_{K}^{ij}(v) dw = \int_{\partial K} p(\Pi_{iK}v_{i}N_{j} + \Pi_{\partial K}v_{j}N_{i}) ds$$

$$-\int_{K} (\partial_{i}p\Pi_{K}v_{i} + \partial_{i}p\Pi_{K}v_{j}) dx, \quad 1 \leq i, j \leq n, \forall p \in N_{K}^{ij}, \qquad (2.1)$$

where $N = (N_1, \dots, N_n)^T$ is the unit outward normal of ∂K . Then we use $\Pi_K v_i$ and $E_K^{ij}(v)$ to approximate v_i and $s_{ij}(v)$ respectively.

Now we are in a position to construct spaces U_{λ} . Define an operator $\Pi_{\lambda}: (H^{t}(\Omega))^{*}$ $\to H$ such that, for each v in $(H^{t}(\Omega))^{*}$, $\Pi_{\lambda}v = (\Pi_{\lambda}v, E_{\lambda}^{t}v)$ satisfies

$$\begin{cases}
\Pi\{v|_{K} = \Pi_{K}(v_{j}|_{K}), \quad 1 \leq j \leq n, K \in K_{k}, \\
E_{k}^{ij}v|_{K} = E_{k}^{ij}(v|_{K}), \quad 1 \leq i, j \leq n, K \in K_{k}.
\end{cases} \tag{2.2}$$

Then the spaces U_{\bullet} are obtained by setting $U_{\bullet} = \Pi_{\bullet}(H^{*}(\Omega) \cap H^{1}_{0}(\Omega))^{*}$; this is the

¹⁾ A subset F is said to be a face of K if there exists a supporting hyper-plane F of K such that $F = K \cap F$.