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THE CONVERGENCE OF NUMERICAL METHOD
FOR NONLINEAR SCHRODINGER EQUATION®
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{(Shanghai University of Science and Technology, Shanghai, China)

~ § L. Introduction

In the past few years interest has smbstantially increased in the solutions of
partial differential equations governing nonlinear waves in dispersive media, while
considerable literature has grown dealing with the numerical approximations of
such problems. One of nonlinear wave equations is nonlinear Schrédinger
equation whose solution is a complex field governing the evolution of any weakly
nonlinear, strongly dispersive, almost monochromatic wave (see Zakharov (1963),
Hasimoto and Ono (1972), Davey (1972) .and Yuen and Lake (1980)). The pure
initial value problfiﬁ was exactly solved by Zakharov and Shabat (1972) using the
inverse soattering method when the initial condition vanishes for sufficiently large
|@|. For more general initial conditions the theoretical solution of the nonlinear
Sohrédinger equation is unknown. From the numerical point of view, Ablowitz and
Ladik (1976) employed a difference scheme for the numerical solution of the
nonlinear Schridinger equation. Other methods were given by Yuen and Lake
(1975), Kuo Pen-yu (1978), Yuen and Ferguson (1978), Yuen and Lake (1980)
~ and Defour, Forten and Payne (1981). Recenily Grifiiths, Mitchell and Morris
(1982) proposed a prediction—ocorrection scheme which does not need nonlinear
iteration. If we choose the parameter suitably. in. that scheme, then the scheme i
stable and has high order acouracy. The numerioal results showed the advantage of
that method. For the striot error estimations, Kuo Pen—yu (1979) gave a proof for
the semi-disorete scheme, Recently Zhu You-lan (1983) considered an imaplicit
scheme and gave iig convergenoe. B - | |

~ This paper is devoted to. the convergence of some numerical methods such as
the Crank-Nicolson method and the prediction—correotion method, the finile
difference scheme and the Galerkin method. . -

§ 2. Crank-Nicolson Method

We consider the following ijmﬁlléjn;ﬁ J
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where a>0. We suppose that for all =0, w(e, £) € L'(R) and for all 5€R, 0<i<7T,
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w(w, t) is bounded,

Let w(z, {) =u(s, ) +m:(m, t) where u(z, l‘r) and w(m, t) are real value funociions,
then (1) becomes

%_+_%+m|w|=—o, @€R, 0<i<T,
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Lo(w, 0)=09(2), - @€R.

lw@) 12 = Tiu(z, )17+ v(, ) |*1da,
then we have | | | B | |
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- For the numerioal solution of (2), we také hand k to be the mesh spacings for
variables « and ¢ respeciively, «y=jh, j=0, +1, £2, -+, Ry={a;}. Lot *(x) be the
value of the function v at 8 € R. and t=nk. We mt:roduce the ful]owing notations
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and

vea(z) = [ﬂ' (m)] B
We define the disorete scalar produot and the norm a8 follows
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It can be proved that
| (e, £°) = (£o, 1)y (6)
(n", ﬂ'+ﬂ"‘"‘)-[lﬂ'ﬂ’ln e e o B S,
2(':‘, n‘) [Iﬂ'l’]:—fh"l o k" R
and o 5
- lﬂ"f"l<-lﬂ"ll£’| T . (8)

Lot U(a), V‘(m) and W"(m) be ' the appro:nmations of u‘(m), 0"(0) and w"(m)
respectively. The Crank—Nioolson scheme for solving (2) is': .



