THE SPECTRAL METHOD FOR SYMMETRIC REGULARIZED WAVE EQUATIONS*

Quo Bo-LING (郭柏灵)

(Institute of Applied Physics and Computational Mathematics, Beijing, China)

§ 1. Introduction

A symmetric version of the regularized long wave equations (SRLWE)

$$\left(\frac{\partial^{2}}{\partial x^{2}}-1\right)\frac{\partial u}{\partial t} = \frac{\partial}{\partial x}\left(\rho + \frac{u^{2}}{2}\right),$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial u}{\partial x} = 0$$
(1.1)

has been investigated in [1]. The system (1.1) of equations is shown to describe weakly nonlinear ion acoustic and space-change waves. The hyperbolic secant squared solitary waves, four invariants and the numerical results have been obtained in [1]. Obviously, eliminating ρ in (1.1), we get a class of RLWE

$$u_{tt} - u_{xx} + \left(\frac{1}{2}u^2\right)_{xt} - v_{xxtt} = 0.$$
 (1.2)

Replacing the derivative for t with the derivative for x in the third and the fourth terms of (1.2), we get the Boussinesq equation. In this note we consider the periodic initial value problem for generalized nonlinear wave equations (including (1.1))

$$\begin{cases} u_{t} - u_{xxt} + \rho_{x} + f(u)_{x} = g(u, \rho, u_{x}), \\ \rho_{t} + u_{x} = h(\rho), \\ u|_{t=0} = u_{0}(x), \rho|_{t=0} = \rho_{0}(x), \quad -\infty < x < \infty, \\ u|_{t=0} = u_{0}(x), \rho|_{t=0} = \rho_{0}(x), \quad -\infty < x < \infty, \end{cases}$$

$$(1.3)$$

$$(1.4)$$

$$(1.5)$$

$$(1.5)$$

$$(1.6)$$

where u(x, t), $\rho(x, t)$ are unknown real functions, and f(u), $h(\rho)$ are known real functions. We propose the spectral method (continued and discrete) for the problem (1.3)-(1.6), establish the error estimates and convergence for the approximate solution, and prove the existence and uniqueness of the classical smooth solution for the system (1.3)-(1.6).

§ 2. Continued Spectral Method and Priori Estimates

First we introduce some spaces and notations. Let $C^l(\Omega) = C^l([-\pi, \pi])$ denote the space of functions, l times continuously differentiable over the interval $[-\pi, \pi]$. $L_p(\Omega)$ denotes the Lebesque space of measurable functions u(x) with p-th power absolute value |u| integrable over the interval $[-\pi, \pi]$ with the norm

$$||u||_{L_p} = \left(\int_{-\infty}^{\infty} |u|^p dx\right)^{\frac{1}{p}}.$$

Received April 20, 1985.

If we define the inner product

$$(u, v) = \int_{-\pi}^{\pi} u(x)v(x)dx, \quad \|u\|_{L_{\bullet}}^{2} = (u, u),$$

then $L_2[-\pi, \pi]$ is a Hilbert space.

Let $L_{\infty}(\Omega)$ denote the Lebesque space of measurable functions u(x) over the interval $[-\pi, \pi]$, which are essentially bounded, with the norm

$$||u||_{L_{\bullet}} = \operatorname{ess\,sup}_{x \in \Omega} |u(x)|.$$

Let $H^{i}(\Omega)$ denote the space of the functions with generalized derivatives $D^{i}u(|s| \leq l)$ with the norm $\|u\|_{l}^{2} = \sum_{|s| \leq l} \|D^{s}u\|_{L_{l}}^{2}$. $L^{\infty}(0, T; H^{i})$ denotes the space of the functions u(x, t) which belong to H^{i} as a function of x for every fixed $t(0 \leq t \leq T)$ and $\sup_{0 \leq t \leq T} \|u(\cdot, t)\|_{l} < \infty$. Especially,

$$||u||_{L^{\bullet}(0,T;L_{\bullet})} = \sup_{0 \le t \le T} ||u||_{L_{\bullet}} \quad \text{or} \quad ||u||_{L_{\bullet} \times L_{\bullet}}.$$

Let $V^{i} = \{u \in H^{i}(\Omega) \mid u^{j}(x-\pi) = u^{j}(x+\pi), \ 0 \le j \le l-1\}$ be a periodic functional space, where $u^{j} = \frac{d^{j}u}{dx^{j}}$,

$$\|u\|_{V}^{2} = \|u\|_{L_{1}}^{2} + \left\|\frac{du}{dx}\right\|_{L_{2}}^{2}, \ V \in H^{1}, \ H = L_{2}.$$

For the backward difference quotient of u(x, t) for t, we employ the following notation

$$u_t(x, t) = \frac{1}{\Delta t} [u(x, t) - u(x, t - \Delta t)].$$

Let F_k denote the projection from H to $H_k = \operatorname{span}(v_{-k}, \dots, v_h)$,

$$F_{k}g = \sum_{j=-k}^{k} (g, v_{j})v_{j},$$

where $v_i = \frac{1}{\sqrt{2\pi}} e^{ijx}$, $i = \sqrt{-1}$.

Set $R_k g = g - F_k g$, when $k \to \infty$, $R_k g \to 0$. From the Bessal inequality, we have $\|F_k g\|_{L_1} \leqslant \|g\|_{L_1}$, $g \in H = L_2$, (2.1)

and Bernstein's estimate[3].

Suppose that the periodic function g(x) is k ($k \ge 1$) times differentiable and the k-th derivative is bounded, i.e.,

$$|g^{(k)}(x)| \leqslant M_k. \tag{2.2}$$

Then there exists a positive constant A, such that

$$|R_n g| \leq A M_k \log n/n^k, \quad n \geq 2. \tag{2.3}$$

In this section, we consider the continued spectral method. We construct the approximate solutions of the problem (1.3)—(1.6) as follows

$$u_{k}(\cdot, t) = u_{k}(t) = \sum_{j=-k}^{k} \alpha_{jk}(t) v_{j}(x),$$

$$\rho_{k}(\cdot, t) = \rho_{k}(t) = \sum_{j=-k}^{k} \beta_{jk}(t) v_{j}(x).$$
(2.4)

The coefficient functions $\alpha_{fk}(t)$, $\beta_{fk}(t)$ should satisfy the equations