THE CALAHAN METHOD FOR PARABOLIC EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS*

Wu Wei (吴

(Jilin University, Changchun, China)

Abstract

A modified Calahan method for parabolic equations with time-dependent coefficients is presented. It is shown that the convergence order is $O(h^{r+1}+k^3)$ while the convergence order obtained in [1] for a standard Calahan method is only $O(h^{r+1}+k^2)$.

§ 1. Introduction

Sammon considered the single step methods (including fully discrete finite element methods) for parabolic equations with time-dependent coefficients (PETO). The convergence order he obtained is $O(h^{r+1} + k^{\min(2,q)})$ under the restriction $k \leq Ch^2$ where h and k are respectively the step lengths of space and time, while $O(h^{r+1}+k^q)$ is the optimal order that we usually get for parabolic equations with timeindependent coefficients. It was asserted in [1] that this estimate cannot be generally improved. It is then an interesting problem whether we could give some schemes for the PETC with convergence order better than $O(h^{r+1} + k^{\min(2,q)})$ in some special cases. As a trial in this respect, we consider in this paper a modified Calahan method (q=3 in this case, see [2]) for the PETC. The convergence order we shall show is optimal, $O(h^{r+1}+k^3)$, under the same restriction $k \leq Ch^3$ as in [1].

We shall describe in this section the problem to be dealt with and give some notations and definitions. In Sections 2 and 3 we shall do some preparative work and in the last section we shall give our main result, the convergence order estimate.

Let Ω be a bounded region in R^{N} with smooth boundary Γ and $t^{*}>0$ a constant, $T = [0, t^*]$. We consider the following PETC,

$$\frac{du}{dt} = Au, \quad (x, t) \in \Omega \times T,$$

$$u|_{T} = 0, \quad t \in T,$$

$$(1.1)$$

$$u|_{T}=0, \quad t\in T, \tag{1.2}$$

$$u|_{t=0}=u^0, \quad x\in\Omega, \tag{1.3}$$

where

$$A = A(t) = \sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(a_{ij}(x, t) \frac{\partial}{\partial x_j} \right), \quad a_{ij} = a_{ij}(x, t)$$

are prescribed smooth functions in $\overline{\Omega} \times T$, $\overline{\Omega} = \Omega + \Gamma$; $u^0 = u^0(x)$ is a given smooth function in Ω .

^{*} Received December 30, 1984.

Let $H^s = H^s(\Omega)$ ($s \ge 0$) be Sobolev spaces of degree s with norm $\|\cdot\|_s$ and H_0^1 the olosure of $C_0^{\infty}(\Omega)$ in the norm $\|\cdot\|_1$; (,) denotes the inner product in $L^2 = H^0$. We also use (,) to denote the dual pair (cf. [5]) of H_0^1 and its dual space $(H_0^1)' = H^{-1}$ normed by

$$||v||_{-1} = \sup_{w \in H_0^1} (v, w).$$

Let $S_h^r(h\geqslant 0)$ be a family of finite dimensional subspaces of H_0^1 with the approximation property

$$\inf_{v_h \in S_h} (\|v - v_h\|_0 + h\|v - v_h\|_1) \leqslant Ch^{r+1} \|v\|_{r+1}, \quad \forall v \in H^{r+1} \cap H_0^1,$$

where and bellow we always use C to denote generalized constants which are not necessarily the same at any two places.

Define

$$a(t; v, w) = \sum_{i,j=1}^{N} \left(a_{ij} \frac{\partial v}{\partial x_i}, \frac{\partial w}{\partial x_i}\right), \text{ for } v, w \in H_0^1, t \in T.$$

Take $k=t^*/M$ as the time step length and $t^*=sk$ for $s\geq 0$. The modified Calahan method for (1.1)—(1.3) is to find $\{U^n\}_{n=0}^M \subset S_h^r$ such that for $n=0, 1, \dots, M-1$ and all $v_k \in S_h^r$,

$$(W^{n+1}, v_h) + bka(t^{n+\frac{2}{3}}; W^{n+1}, v_h) = -ka(t^{n+b}; U^n, v_h),$$
 (1.4)

$$(Z^{n+1}, v_h) + bka(t^{n+\frac{2}{3}}; Z^{n+1}, v_h) = -ka(t^{n+b}; U^n, v_h)$$

$$+cka(t^{n+1}; U^n, v_h) - a(t^n; U^n, v_h) + a(t^{n+\frac{2}{3}}; W^{n+1}, v_h),$$
 (1.5)

$$U^{n+1} = U^n + W^{n+1} + \frac{1}{4} Z^{n+1}, \qquad (1.6)$$

$$U^0 = \widetilde{u}^0, \tag{1.7}$$

where $b = \frac{1}{2} \left(1 + \frac{1}{3} \sqrt{3}\right)$, $c = \frac{2}{3} \sqrt{3}$; $\{W^n\}_{n=1}^M$, $\{Z^n\}_{n=1}^M \subset S_h^r$; \tilde{u}^0 is an approximation of u^0 in S_h^r satisfying

(H2)
$$\|u^{0} - \widetilde{u}^{0}\|_{0} + h \|u^{0} - \widetilde{u}^{0}\|_{1} \leq Ch^{r+1} \|u^{0}\|_{r+1}.$$

Throughout this paper we shall always assume that the conditions (H1), (H2) and the following hypotheses (H3) and (H4) are valid.

(H3)
$$\begin{cases} 1) \ a_{ij} = a_{ji}, \text{ for } (x, t) \in \overline{\Omega} \times T; \\ 2) \ \sum_{i,j=1}^{N} a_{ij} r_{i} r_{j} \geqslant C \sum_{i=1}^{N} r_{i}^{2}, \text{ for } (r_{1}, \dots, r_{N}) \in \mathbb{R}^{N}, (x, t) \in \overline{\Omega} \times T; \\ 3) \ \frac{\partial^{s} a_{ij}}{\partial t} \in C^{0}(\overline{\Omega} \times T), \text{ for } i, j = 1, 2, \dots, N; \ s = 0, 1, \dots, 4; \\ 4) \ (1.1) - (1.3) \text{ possesses a unique solution } u \text{ and} \\ \|u\|_{p,\infty} = \sup_{t \in T} \|u(t)\|_{p} < \infty, \ p = \max(r + 4, 8); \\ 5) \ \|v\|_{s+2} < C \|Av\|_{s}, \text{ for } v \in H^{s+2} \cap H_{0}^{1}, \ t \in T, \ s \geqslant -1. \end{cases}$$

(H4)

Remark 1. Condition 5) of (H3) is valid when Γ and a_{ij} 's are sufficiently