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Abstract

In this paper, some discrete-time finite elemant methods for nonlinear hyperbolic squations ars
deorived and their theoretical analysis is given., The stability and the convergence of the finite alement
method for linear and semi-linear hyperbolic equations have already been.discussed[t-31.

Congider the initial boundary problem:

| ;taﬂ‘;- [Ve, o (2, u)Vai] =B(a, w)Vast+f(2, w), 2€Q, i€[0, T,
%tu-(m, 0)=0, z€Q, 1)
]u(m, 0)=Or EGQ!

u(z, ) =0, s€aq, t€ [0, T,
where Q2 is a bounded domain in B" with a smooth boundary,

u(@, 1) ={(w(®, 1), wala, ) wr(z, 8))", Ve, (@, u)Vari]

I n &E
denotes an IL—tuple whose l-th component is D) > g (a:;,,,;,,;(:u, u:)——),
k=1 6i=1 Oy Ox;

L n
B(x, u)Vu also denotes an L—tuple whose I-th eomponent is > >3 by,5.:(, u)ﬁ-,

andf(m, H)m (f:l(mr H), fﬂ(mi H): et fL(mr “))T_

We now make several assumptions which will be referred to as condition (A).
Condition (A) (i) For (, p) € Q2 X RF, the matrix o (o, p) = (ay, 1,12, p)) i3
symmetric and wuniformly positive definite. Any a2z, P), .m"’*“é’;sm' P)__}

P02 D). Fhsni(2 P) are locally bounded
32)2 y 3PH_- y .
(ii) For the matrix B(=, p) = (bix.(2, p)), any b;,s..(2, p) €O for(z, p) €Q X R"

and Bbuw(. p) are locally bounded,

dp .
(iii) For any component f;(z, p), £ ’%I; p) is locally bounded.

(iv) u€L_(0, T; H* N W) is a unqiue solution to Problem (1).
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"The matrix &7 = (a4 i8 uniformly positive definite in the sense that there:
exigts a co>>0 such that for all £ = (&)

col§ 12 <Zau, 51 Ersns (2

1
where we have used the norm |§] = [[§, £1]%2.
Let So={(, §); 1<I<L, 1< j<n}. We shall use two ‘“nner products” on the

veotor. Suppose 8 ={(l, j); 1<I<L, jES;}; then for U=(U,) and W =(W,), detine
[U, W] to be an L—tuple given by

[UI W] s ( [Ur W]ir [U‘! W:l 2 [U: W-IL)TI
LU, W]:=1EEE UuWy,

[[U, W] =§:UIEWH-
The variational problem corresponding to Problem (1) is
a8 m>+m(u; u, v) =<{B(w, u)Va, v)+<{f(a, w), v,

o
. <%('D), ‘I.J>'=0, tE [01 T]? VﬁEHE* . (3)
w(0), vp=0,  VoE€H;
uC H (Q),

‘where ¢w, v>=({w, vDy, {w, ¥Dg{w, vDr)", W, w>:=]'n wi()vi(2)ds, a(w; u, v)=
L. [of (3, w(z))Veulz), Vov] da, and the notation w€ Hi(Q) means that each

component is in Hg(2).

‘We shall approximate the solution to (3) by requiring that the approximate
function space and the test function space lie in g =gy X pha X +++ X g, Where u; is
a finite—dimensional subspace of Ho.

Lot w;=SES(Q)cC HI(Q2) N H1(Q2) which satisfies™:

- (1) P(Q)8e5(Q),

(ii) let A€ (0, 1) and for any UcH(Q) NHV2), r=0, and O<s<min(r, j}

there exists a constant ¢; independent of k and U such that
inf |U— x| asey<scd’ \U |z,
T €S
where ¢ =min(k+41—s, r—s),
(iii) the inverse property:

lelao <Kob Zlzloken VZESEIQ).

We employ a fully discrete approximasion to (3) nsing finite elements in =
and differences in ¢ such that the following hold:
(i) The interval {0, T'] is partitioned into N equal subintervals

O=ty<ty <l Liy=T, 11— 3= At.



