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Abstract

This paper discusses the sensitivity of semisimple multiple eigenvalues and eorresponding invariant
subspaces of a complex (or real) »Xn matrix analytically dependent on soveral parameters., Some
results of this paper may be useful for investigating robust multiple cigpenvalue assignment in conirol
system design. -

§ 1. Introduction

This paper, as a continuation of [7], discusses the sensitivity of semisimple
multiple eigenvalues and corresponding invariant gubspaces of 2 complex (or real)
nXn matrix analytically dependent on several parameters. An eigenvalue of a
matrix is called semigimple if the maximal degree of the elementary divisors of this
eigenvalne is one. .'

In addition to the notation explained in[7] we use £™** for the set of complex
m X n matrices, C*=C>*, C=Cland

Crxa= { A CC™**: yank(4) =r}.

Let p= (11, pa, *+-, Dy)T €O%. Suppose that A(p) €C"™" is an analytie fanction

in sorme neighbourhood Z(p") of the point p* € C*. Without loss of generality we

may assume that the point p* is the origin of C¥. We consider in this paper the
eigenproblem

A(p)z(p) =r(p=(p), A(p)€EL, o(p) €T, pEX(0). (1.1)
First of all we investigate an example. ~ |
Ezample 1.1.
14+2p1+2ps Pa ] T *
A(p) = = Te A, 1.2
(P) [ 2ps 1ty ! T (sa.. p2)” € (1.2)

Obvinusly, the matrix A(p) is an analytic funotion of p€ C2 A(0) has a multiple
eigenvalue 1'and the eigenvalues of A(p) are
A1(p) =1+p+3pa+~PE+05,  Aa(p) =14p:+3ps— ~ P+ Pl (1.3}

Observe that by ihe theory of analytic function of one complex variable the function
~/ z for z& C is defined ag |

V7 = |z| V2% arg 2€ (— @7l

consequently, if we seot
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Alm( Tk 2]: dﬂ=(“ﬂ;r H'E]U<_2“! .‘.?F:l, (1'4)
then .
T B 6{;“;(;-)__ { 1, arg 2€ 44, (1.5)
g e —1, arg 2€ 4,. '
Utilizing (1.4) and (1.5) we get
oM () _ [ k(D) _ 1.8
3@1 )f:ﬂ‘r ll‘l‘ Ay ( 3@1 )ﬂ=ﬂi arg i< ds 2' ( ¢ )
Ori(p) _{ Ohs(p) _ 1.7
( 3@; )F=U‘s Rrg P dy ( aﬂ.')j_ )p"—'l}tﬂl‘E P1 € dy 0? ( ; )
A1 (p) Iha{p) - 1.8
( apg | )p=l}r AT facda ( 3,?32 )p=ﬂ‘r AE Pr1cds ( )
and
A1 (D) - _3542(?) —_9 1.9
( 3Pﬂ p=0; arg s £ A ( 3?3 )p:ﬂ'j arg ;€ ; ( . )
Here we define |
(2e(2)) - lm M@ O-AO0) L,
D1 p=0) arg ;1 Cdy - Lfi—[?ugat.ea ™
the partial derivatives ( 92 (p) (s, =1, 2) are defined similarly.
3?: F=0+ ATR PaCdy

The relations (1.6)-—(1.9) show that the funotions Ai(p) and As(p) are not
derivable at p=0, Besides, it is worth—while to point out that the functions A (p)
and A;(p) are continuous at p=0 but not in any neighbourhood of the branch point
p=0,

Now we set

A(p) = (AD)) pmiotres  Z(D3) = (A(D)) o000

in which A(p) is described in (1.2). It is easy to see that A(0) and A(0) have
multiple eigenvalue 1, the eigenvalues of 4(p,) are

M(p) =1+2p;, X(py) =1, - (1.10)
and the eigenvalues of 4 (p,) are | -.
il (Pﬂ) “1+2P5._, ig(?ﬁ) ="1+4P3. 3 (1 -11)
Comparing (1.10), (1.11) with (1.8) we find that
| M(py), arg pi€ 4y,
(M(P))rﬂ(m-m’ {Rﬂ(fa_), arg oy € 4y,

As (p1), arg m1 € 4y,
Ai(ps), arg p1€ 45,
As(pa), arg Pa€ 4y,
i1( Pa), arg Pa€ 4y,

(?hz(?))p—(ﬁ py)T = { ii (ps), arg Pa€ 4,
. L in(_‘?:), arg pac ds, _
where 4; and 4; are defined by (1.4). |
We note that the following facts are important: the functions %, (p1) and As(py)

(A2(2) ) =m0 = {

B L i ={



