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Abstract

A new method for nonlinearly constrained optimization problems is proposed. The
method consists of two steps. In the first step, we get a search direction by the lin-
early conatrained subproblems based on conic functions. In the second step, we use
a differentiable penalty function, and regard it as the metric function of the problem.
From this, a new approximate solution is obtained. The global convergence of the given

method is also proved.

§1. Introduction

The nonlinearly constrained optimization problem to be considered in this paper 1s

defined by

Minimize  f(z),
(NP) ' subject to &(z) >0, +=12,---,m,
hi(g) =0, 7=12,--,1

'Afhere f, e, h; denote real and differentiable functions of vector r in the n-dimensional
Euclidean space IR".

Many techniques have been proposed to solve minimization problems with nonlinear
constraints [2]. One of the proposed approaches is to iteratively solve linearly constrained
subproblems. This method with quasi-Newton updates was originated by Han [4]. Powell
[8] proposed another more practical update scheme, and proved that the methods having
superlinear rates usually use a nondifferentiable penalty function, and regard it as the met-
ric function of the problem[5]. Moreover, Yamashita 113] constructed a globally convergent
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constrained quasi-Newton method, but his method is only suitable for the problems with in-
equality constraints. Murray and Wright 6[] studied the computation of the search direction
in constrained optimization algorithms.

The above-mentioned methods are based on quadratic models. However, when the
objective function has stronger non-quadratic properties in the neighbourhood of iterative
points, these methods will face some difficulties. For this reason, we consider the methods
based on the non-quadratic model. At present, conic models have been used in unconstrained
minimization algorithms successfully (see Davidon [i], Gourgeon and Nocedal [3]). In this
paper we establish a globally convergent method for nonlinearly constrained nptimimtion
problems. The method consists of two steps. In the first step, we get a search direction by
solving linearly constrained subproblems based on the conic function. In the second step,
we use a differentiable penalty function, and regard it as the metric function of the problem.
From this, a new approximate solution is obtained. Section 2 gives the construction of the
search direction. In Section 3 we establish the algorithm. In Section 4 we prove global
convergence of the given method.

Except in Section 4, for convenience, in describing an iterative method we do not
use superscripts to denote three neighbouring iterations containing the present iteration.
Instead, we place a bar over or under quantities which correspond to the neighbouring
iteration, e.g., if z denotes the present iteration, then Z and z will denote the following and
previous iteration, respectively. Subscripts are used to denote components of a vector, for

example, z; is the 1th component of vector z.

§2 Comnstruction of the Search Direction

In order to make a search direction d at iteration point z, we consider the subproblem
that minimizes the conic function with linear constraints:
Vf(z)'d

1+ b6"d

aWd

(CCP) Minimize c(z+d) = f(z) + (1+57d)?’

"
2

subject to  ¢;(z) + Ve;(z)'d > 0, t=1---,m,
hi(z) + Vhi{z)'d=0, ;=1,---,,
1+67d>0

where c(z + d) is the approximation of f(z) near z by the conic functon, w = V3 f{z) +
bV f(z)" + Vf{z)bT and b € IR™.

Remark 2.1. The subproblem CCP is consistent. For example, d = 0 is its gpecial
solution. | | |

The solution of CCP and its corresponding Lagrange multiplier will be denoted by an
array (d,o,7) € IR™ x IR™ x IR’ in the following discussion. By the Kuhn-Tucker condition



