Vol.7 No.l Journal of Computational Mathematics January 1989

ON S$-STABILITY *

ZHAO SHUANG—SUO DONG GUO-XIONG QIA0 NING
(Lanzhou Unsverssty, Lanzhou, Gansu)

Abstract

We prove in this paper that no consistent and well-defined Runge-Kutta
method is S—stable and point out the errors of the theorems on S-stability in

[1].

1. Introduction

To further study the stability of a general R~K method

Yntl = Yn T z bik;, k= hf(tn + cih, yn + Z ai'.fk.f): ¢ = 1(1)r, (1.1)
=1 =1

which is used to solve a stiff initial value problem

yl = f(t: y): y(tﬂ) = Y0, Yo, y:f = RN}tU <t< T: (12)

A. Prothero and A. Robinson presented in {1] the concepts of S—stability and strong
S—stability, and derived necessary and sufficient conditions for both stabilities (The-
orems 2.1 and 2.2 in [1] ). Then they discussed stabilities of several classes of well—
defined and consistent R—K methods and concluded that these methods are S—stable

or strongly S—stable.
Their work has a great influence on the research of numerical methods of stiff

O. D. E.. The concepts and theorems of S—stability and strong S-stability have
been adopted by many authors (see {2]-[7] ).

Based on the definition of S—stability in [1], we now prove that consistent and
well-defined R-K methods are not S-stable, and therefore not strongly S—stable.

Then we point out the errors in Theorems 2.1 and 2.2 in [1].
For convenience, here we introduce briefly the definitions and some main con-

clusions of S-stability and strong S-stability in {1] and adopt the symbols of [1] as
much as we can.

" Received October 22, 1988,



No. 1 On S-Stability 57

2. Definition of S-Stability and Some Main Conclusions in {1}

Definition 2.1. A R-K method (1.1) is said to be S-stable if it 15 applied to
the test equalton

V=My-g(t))+4'(t), 9€G (2.1)

- (where X is a complex constant with Re(A) < 0, and G is the set of all functions
defined in [to,T], which have first bounded-derivative), and for any real positive
constant Ag and any ¢{t) € G, there exists a real positive constant kg, such that

l€ns1] < len], VhE (0,ho), VA with Re(—A) > do, tn,tni1 € [to,T]  (2:2)

provided y, # g(t,), where €, = y, — g9(tn).
Furthermore, (1.1) is said to be strongly S—stable if it is S—stable and

ent+1/En — 0, VR E (0, ko), as Re(—A) — o0, tn,tpt1 € [to, T. (2.3)

Since the solution of (2.1) is y(t) = g(t) + (vo — 9(to))e**~*°) and g(t) is quite
arbitrary, the methods with S—stability and strong S—stability are very satisfactory.
That is why many authors studied the construction of S—-stable and strongly S-

stable methods.
Correspondingly to [1], note z = 1/(Ah). Applying (1.1) to (2.1), we obtain

ent1 = a(2)en + hA(2),

where
a(z)=1- bT(A —zI)7le, A= (ai;),
e=(1,1,---,1)%, b= (by,---,b,)7,
B(z) = —Go + b7 (A — 2I) 7 (5(3 — 9(tn)e) - 24,
Go = (g(tn+1) — 9(tn))/h,
§ = (9(tn + c1h),-+,g(tn + erh))’,
§' = (¢'(tn + c1h), -+, g'(tn + c-h)) .

Lemma 2.1. Assume R = {2|0 < Re(—2z) < z} and Z i3 a real posstive
number. Define

e(z,h,e0) = a(z)eg + hB(2), Veo €C, Vhe(0,h), VzER, (2.5)

where k is a real positive number . Then for any g € G, there ezists a real posstive
number ho = ho(Z,€0) < h, such ;hat

(2.4)

le(z, h,e0)| < |eol, Yeo #0, Vhe (0,ho), VzE€R

if and only sf



