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Absatract

In this paper, we present a dual algorithm for minimizing a convex quadratic func-
tion with two quadratic constraints. Such a minimization problem is a subproblem that
appears in some trust region algorithms for general nonlinear programming. Some the-
oretical properties of the dual problem are given. Global convergence of the algorithm
is proved and a local superlinear convergence result ia presented, Numerical examples

are also provided.

§1. The Problem

In this paper, we present a dual algorithm for minimizing a convex quadratic function
with two special quadratic constraints. The problem has the form:

t R ..]:
min $(d) = g"d + szBd, (1.1)
subject to
Idllz < A, (1.2)
|ATd + cl|2 < &, (1.3)

where g€ R, B e R A e RV™ cec R™,A>0,{2>20and Bisa symmetric ma-
trix. Problem (1.1)-(1.3) is a subproblem of some trust region algorithms for constrained
optimigation (for example, see Celis, Dennis and Tapia, 1985; and Powell and Yuan, 1986).
Some theoretical properties of the problem are presented in Yuan (1987) for general B, but
now we restrict attention to the case when B is positive definite, because we have not yet
found a reliable method for computing the global solution in the general case.

The algorithm, given in Section 3, is based on Newton’s method for the dual program of

the following problem:

1
i = 47 e
min &(d) = g"d+ sz Bd, (1.4)
subject to
Id|j < A%, (1.5)
|ATd + cl2 < &7, (1.6)
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which is equivalent to (1.1)-(1.3).

In the next section, we give some theoretical properties of the dual problem. Then an
algorithm is presented in Section 3, and convergence properties of the algorithm are given
in Section 4. Numerical results are reported in Section 5, and finally a short discussion is
given in Section 6.

§2. Dual Theory

For the dual variables A > 0, 4 > 0 we define the matrix

H(A\u)=B+AI+ uAAT, (2.1)

and the vector
d(A, p) = —H(X, p) " g+ pAc). (2.2)

We also define the function
1 1
¥(2, p) = S(d(A, p)) + SA(14(A, )3 — &%) + Su(|ATd(A, ) + 3 - €3). (2.3)
The dual problem for (1.4)-{1.6) is

r
W{A, ), 2.4
BT (A, 1) (2.4)

where we use the notation Ri = {A 2 0,u > 0}. The relation of the dual problem to
the primal problem is given in Lemma 2.2 below. One advantage of working with the dual
problem (2.4} is that it has only two variables. Moreover, because gradients and second-
order derivatives of W(A, u) can be easily computed, (2.4) can be solved by applying Newton'’s
method. Because the vector (2.2) is the value of d(), u) that minimises the righthand side
of expression {2.3), direct calculations show that

1 ld(2, u)lI3 — A2
P =3{ L ) ’ .
VU ) = — ( d(X, )T H(A, p)"1d(A, p)  d(A, w)TH(A, 8)"2y(A, p) ) | 2.0
A, w)TH(A p) ry(M8) (A, B)TH(A, 5) " 2y(A, )
where y(A, 4) is the vector
y(X, 8) = A(ATd(2, 1) + ¢). | (2.7)

It is easy to see that W(A, i) is a concave function. Another advantage of working with the
dual problem (2.4) is that, as shown in the following lemma, the gradient and the Jacobian
of W(A, u) are both bounded above, even if the constraints (1.2) and (1.3) are inconsistent.

Lemma 2.1. Let d(A, u) be defined by (2.2). Then

d(A, 2.8
{*Elgi (A, #)2 (2.8)

1s finite. Consequently, VU(], u) and VW (), u) are bounded above in R2 .
Proof. The definition (2.2} shows that

la(A, 2)liz < |H (A, 8} gliz + |H(A, 4) "  Ae| 2. (2.9)



