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Abstract

In this paper, a class of integration formulas is derived from the approximation so
that the first derivative can be expressed within an interval [nh,(n + 1)k] as

‘;_3: = _P(y_ yn) +fn+Qn(t)'

The class of formulas is exact if the differential equation has the shown form, where P
ig a diagoftal t;iatrix, whosge elements

d
_'=_f'trnr1: =1:m
PJ ay}_ J( ¥ ) J ’
are conatant in the interval [nhk, (n + 1)A], and @.(¢) is a polynomial in ¢.
Each of the formulas derived in this paper includes only the first derivative f and

a
Shor y tn, 3 J»
ayjf.?( 1] )

It is identical with a certain Runge-Kutta method as P tends to zero and thus correct
to the order of such Runge-Kutta method. In particular, when Q,(t) is a polynomial
of degree two, one of our formulas is an extension of Treanor’s method, and possesses

better stability properties. Therefore the formulas derived in this paper can be regarded
as a modified or an extended form of the classical Runge-Kutta methods. Preliminary

numerical results indicate that our fourth order formula is superior t¢ Treanor’s in
stability properties.

§1. Introduction

It is well known that the classical Runge-Kutta method, generally very satisfactory for
non-stiff systems, fails badly in handling stiff systems. Thus, it is desirable to have a class
of explicit formulas which can handle stiff systems (at least some special stiff systems) but
which can provide proper speed and accuracy, of course, where a little special treatment 1s
required.
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In many practical applications, one encounters systems of ordinary differential equations
which can often be expressed approximately as

Y = =Py — yn) + fn + Qult,v),

where P is a diagonal matrix, p; = —9f;/dy; is a large quantity, én(t, y} is a function of ¢
and y varies slowly and thus can be approximated by a polynomial Q,.(t) in t. By virtue of -
this fact Treanor has proposed a modified Runge-Kutta method in [1]|, however, the interval
of absolute stability is still small for handling stiff systems [2], {3]. Though the approach we
will use is almost the same as Treanor’s, one of the formulas we will provide, when @, (¢) is
a polynomial of degree two, is really an extension of Treanor’s method and possesses even
better stability properties. Therefore, our formulas may also be regarded as a modified or
an extended form of the classical Runge-Kutta methods.

Finally, eleven test problems arising mainly in chemistry from [4}, [5] are chosen for nu-
merical experiment. Preliminary numerical results indicate that our fourth order formula is
superlor to Treanor’s in stability properties. However, just like Treanor’s method, generally
speaking our formulas are suitable only for the cases in which the main diagonal elements
of the Jacobian matrix are large and the off-diagonal elements are comparatively small.

§2. Derivation of Integration Formulas

In this section a class of numerical integration formulas of the stiff initial value problem

{y' = f(t,y), )

¥|,._o = Yo

will be derived.
Assume that the equations of (1) at point (¢,,y,) can be expressed approximately as

y' = =Py — yn) + fu + Qnlt), (2)

where P is a diagonal matrix with elements

d :
™ = ayj.fj'(tﬂjyn): g = 1,2,"‘,??'1

and @, (¢) is a polynomial in ¢ containing unknown parameters which are determined in the
course of the integration.
To simplify notation, we restrict our discussion to the scalar equation, and set

1
Fi-1(h) - ({— 1)
(—ph) |
Now the formulas for different @, (¢) are derived as follows. First of all we consider the

simplest case, namely Eq. (1) can be expressed approximately in the interval {nh, (n + 1)A)|
as

Fo(h) = e P, Fi(h) = Fas 1,8 vy (3)

¥ = —ply —yn) + fn + Alt — ts). (2.1)

Then the ordinary differential equation

f

¥y = —ply — yn) + fa,



