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In this short note, examples are constructed to show that a recent algorithm
given by Soliman, Christensen and Rouhi[l] may give a non-optimal solution.

l'.n'[l],., a linear least absolute value (LAV) estimate algorithm is presented. The
linearly constrained LAV problem has the following form. |

, min 176 - 2l ()
Cé=d | (2)

where H € R™*", z € R™, C € R*™ and d € R'. One of the algorithms given in [1] is
for solving problem (1)-(2). The algorithm can be restated as follows:
Algorithm 111, Step 1. Calculate

(] (5): X

where Bt is the Moore-Penrose generalized inverse of B.

Step 2. Compute
N - H .
“=(2)-le]" 4

j i |

ﬂ._r - J;:Z:(r: = F)?. . . . (6) l

Step 8. Let J = {J[Ir“"l <0,1<j<m}and
 Pr=Yejed (7)
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where ¢; (j = 1,---,m) are unit vectors in ™.
Compute the new least squares solution .,
- _ o
- PJH PJ"?’ - S
w7 (7)) ®
Thew = 27 HOZ - (9)

Step 4. Let I = {iy, - ,int} be a subset of {1,:-- ,m} which corresponds to the

n — | smallest residuals. Let Pr = Zeie? and solve
i€l

PrH Prz |
[ )e=(7)

to get 8. Accept 8 as a solution. - CoE |
It should be noted that definition (6) is not the usual definition for standard devi-

ation. We use (6) because it is the definition, as we understand, used by [1]. However,
our examples are also valid if the usual definition of standard deviation is used. An-
other point that is worth mentioning is that r%., denotes first m residuals of the whole

system, though 6}, is the least squares solution of a reduced system.
Soliman et al. [11 also extended the above algorithm to solving nonlinear LAV

problems. For more details, see [1]. Now we give a linear LAV problem for which a -
non-optimal solution would be given by the above algorithm. |
Example 1. Solve problem (1)}-(2) with the following data:

11 2
1 2 2
1 3 3
H = { 41 z=| , 1 (11)
1 5 0
e 0 0 |
C=(@1 6), d=(5), (12)

where ¢ € (0,1) is a very small parameter,
Our example is very similar to Example 2.1 of {1]. We have added a very small row in F

the example, expecting that the corresponding residual will eventually be the sma]leat.-___fé
The original z5 = 3 (as in [1]) is changed to 0 to guarantee that the fifth residual_wi]l_'ﬁi%
be the only measure to be deleted. Tt should be noted that, unlike Example 2.1 of [1],"
the above example can not be viewed as a Stfafght line data fitting problem -beca.u5é§
¢ # 1. However, we can still analyze the above algorithm for problem (1)—2) with da.ta.
given by (11)-(12). | | -
" It is easy to calculate




