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Abstract

Matrix analysis on additive Schwarz methods as preconditioners is given in this
paper. Both cases of with and without coarse mesh are considered. It is pointed
out that an advantage of matrix analysis is to obtain more exact upper bound.
Our numerical tests access the estimations.

1. Introduction

We consider the following second order elliptic boundary value problem:

Lu = f, in Ω, (1)

u = 0, on ∂Ω, (2)

where L is a self-adjoint positive operator and

Ω ⊂ Rd (1 ≤ d ≤ 3)

is a polyhedral domain.

A weak solution has the following form: Find u ∈ H0
1 (Ω) such that :

A(u, v) = f(v), ∀v ∈ H0
1 (Ω)

A(u, v) =

∫

Ω
Lu(x)v(x)dx, f(v) =

∫

Ω
f(x)v(x)dx.

Let V h := M = Span {φi}, where {φi} could be nodal basis consisting of piece-wise

linear functions or other spline functions. Substituting the following solution

uh =
∑

uiφi

into the above weak form leads to a discrete equation

Au = f, (3)
where

A = (αij), αij = A(φi, φj). (4)
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It is well known that the coefficient matrix A is symmetry positive definite matrix with

condition number

κ(A) = O(h−2). (5)

When we use conjugate gradient algorithm for solving the system, for a given tolerance,

the iteration number will proportional to h−1. This convergent rate is really slow for a

large scale problems. It is our purpose, in this paper, to do some analysis on Additive

Schwarz Methods (ASM) as preconditioners in detail. In order to obtain estimation on

condition number of the preconditioner system more accuracy, we take 1-D case as a

model problem. The related results on higher dimension will be reported later.

2. A Projector Preconditioner

Suppose a subspace

Mc := Span{ψk} ⊂ M

with the basis transformation

ψk =
∑

tkiφi, Ψ = TΦ, T = (tki).

Define a projector Pc : M → Mc such that for any given u ∈ M

A(Pcu, v) = A(u, v), ∀v ∈ Mc. (6)

Assume that

Pcφj =
∑

βkjψk or PcΦ = GΨ, G = (βkj).

So

A(Pcφj, ψl) =
∑

A(ψk, ψl)βkj .

Denote

Ac = (A(ψk, ψl)), Q = (A(φj , ψl)),

then

AcG = Q.

This means that as a linear operator from M to Mc, the matrix representation of Pc

from coordinate basis φ to ψ is as follows

Pc ∼ G = A−1
c Q = A−1

c TA.

When we back to the original space and take Pc as a linear operator from M to M

itself, the corresponding matrix form becomes

Pc ∼ T ′G = A−1
c Q = T ′A−1

c TA . (7)

Therefore, we may look the projector Pc as the result from a preconditioned operator

of A, the related preconditioner is

Bc := T ′A−1
c T . (8)


