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A MULTI-GRID ALGORITHM FOR STOKES PROBLEM∗1)
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Abstract

In this paper we describe a multi-grid algorithm for the penalty procedure of

Stokes problem. It is proved that the convergence rate of the algorithm is bounded

away from 1 independently of the meshsize. For convenience, we only discuss Jacobi

relaxation as smoothing operator in detail.

1. Introduction

Consider the Stokes problem















−µ△ u + ▽ p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in Rd, d = 2 or 3. Since, within a code for the numer-

ical solution of the Navier-Stokes equations, one needs an efficient Stokes-solver, the

multigrid method is very attractive for the solution of the discrete analogue of (1.1).

Brezzi and Douglas[6] have applied a penalty procedure for (1.1) with the

C0-piecewise linear element of velocity and pressure and achieved an optimal conver-

gence rate. In this paper we establish a multi-grid algorithm for the penalty procedure

of Stokes problem and show that the convergence rate of the algorithm is bounded away

from 1 independently of the meshsize.

The general structure of our convergence analysis for the multi-grid algorithm is

similar to that of Bank and Dupont[2,3] and Hackbusch[8]. The smoothing properties are

given in terms of a mesh-dependent norm. The approximation properties are obtained

from error estimates in terms of Sobolev spaces. The connection between the associated

scales of Sobolev spaces, however, requires some special considerations. It is performed

via the duality technique of Aubin-Nitsche. To simplify the analysis we only consider

Jacobi relaxation as smoothing procedure in detail.
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2. A Multi-Grid Algorithm

A mixed formulation of (1.1) is given by the finding of [u, p] ∈ H1
0(Ω)× L̂2(Ω) such

that
{

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L̂2(Ω)
(2.1)

with the bilinear form

a(u,v) = µ

k
∑

i=1

(▽ ui,▽ vi) = µ

k
∑

i,j=1

(
∂ ui

∂ xj
,
∂ vi

∂ xj
),

b(v, q) = −(div v, q)

on H1
0(Ω) × H1

0(Ω), H1
0(Ω) × L̂1(Ω). Here, (·, ·) is the inner product in L2. More-

over, Hk(Ω), k ∈ N , and L2(Ω) = H0(Ω) are the usual Sobolev and Lebesgue spaces

equipped with the norms[1]

‖u‖k = {
∑

|α|≤k

∫

Ω
|Dαu(x)|2 dx} 1

2 .

Furthermore, H1
0(Ω) = (H1

0 (Ω))2. We use a circumflex “ .̂ ” above a function space to

denote the subspace of the elements with mean value zero.

Let T0 be a partition of Ω into d-simplices and h0 be the longest side of the simplices

of T0. We suppose that the simplices of T0 satisfy the usual regularity assumptions for

finite elements[7] and that

hK ≤ c0ρK , ∀K ∈ T0,

hK := diam(K),

ρK := sup {diam(B) | B is a ball contained in K},
(2.2)

where c0 is not large. The partitions Tk, 1 ≤ k ≤ R, are defined by dividing each

K ∈ Tk−1 into 2d d-simplices by joining the midpoints of the sides (cf. Fig. 1). Then

hk = 2−kh0, and the partitions Tk satisfy the regularity assumption (2.2) with the same

constant c0.
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Fig. 1. Subdivision of triangles in the construction of Tk from Tk−1


