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Abstract. In this paper we demonstrate the performance of a slope limiting

procedure combined with a discontinuous Galerkin (DG) finite element solver

for 2D compressible Euler equations. The slope limiter can be categorized into

van Albada type and is differentiable. This slope limiter is modified from a

similar limiter used in finite volume solvers to suit the needs of the DG solver.

The gradient in an element is limited using the weighted average of the face gra-

dients. The face gradients are obtained from the area-weighted average of the

gradient on both sides of the faces. The slope limiting process is very suitable

for meshes discretized by triangle elements. The HLLC (Harten, Lax and van

Leer) or the local Lax-Friedrich (LLF) flux functions is used to compute the

interface fluxes in the DG formulation. The second order TVD Runge-Kutta

scheme is employed for the time integration. The numerical examples including

transonic, supersonic and hypersonic flows show that the current slope limiting

process together with the DG solver is able to remove overshoots and under-

shoots around high gradient regions while preserving the high accuracy of the

DG method. The convergence histories of all examples demonstrate that the

limiting process does not stall convergence to steady state as many other slope

limiters do.
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1. Introduction

Discontinuous Galerkin (DG) method has been gaining popularity in computa-
tional fluid dynamics (CFD) in recent years [8, 9, 27]. Indeed, the DG method
can be considered as a mixture of classic finite element method (FEM) and finite
volume method (FVM). In the DG method, the advantageous features of the FEM
and FVM are combined resulting in a robust and accurate numerical scheme for
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solution of problems involving shocks and other discontinuities. The variational
form for each element is obtained by multiplying the governing equations with a
test function and integrating conservative fluxes by parts. This results in boundary
fluxes normal to the element interfaces. The inviscid flux is upwinded using an
approximate Riemann solver.

Compared to the stabilized FEM, such as the streamline-upwinding/Petrov-
Galerkin (SUPG) [1, 2, 3], the DG method is capable of sharper representation
of the discontinuities in the solutions. In the DG method, the solution across each
element can be discontinuous, therefore the DG method is naturally a better solu-
tion strategy for problems involving shocks and discontinuities. The DG method
also eliminates the need for SUPG stabilization in advection dominant flows. In
the DG method, the upwind fluxes provide the necessary stabilization. In addi-
tion, the hp refinement can easily be implemented in this method [9, 20] because
hanging nodes are allowed in the DG method. The DG method is more compact
than the FVM. In the finite volume method, the reconstruction within a cell re-
lies on a cluster of neighboring cells using the path integral method or the least
square method. If higher spatial accuracy order is desired in FVM, the number
of supporting cells has to be increased. In contrast, in the DG method, linear or
higher order interpolation functions can be employed to obtain the solutions at any
points inside the element. The supporting elements are the same regardless of the
spatial accuracy. This compactness makes the DG method more stable and easier
to implement than the finite volume method. However, compared to the stabilized
Galerkin finite element formulations, the DG methods require the solutions of sys-
tems of equations with more unknowns. However, if high order elements are used
in the DG method, a very coarse mesh can be used to attain sufficient solution
resolution [6]. Therefore the disadvantage of the DG method can be outweighed by
its outstanding advantages.

It is well known that the nonphysical oscillations around high gradient discon-
tinuities exist for linear stabilization techniques [1]. The oscillations are some-
times severe enough to cause stability problem. A discontinuity capturing [1] or
an appropriate limiter is a common cure for this problem. Aliabadi and Tu [4]
use discontinuity capturing method commonly used in SUPG/GLS finite element
solvers as an alternative to slope limiters in their DG solver for 2D transient Euler
equations. Sun and Takayama [22] employ a smoothing step in addition to the ad-
vection step to smooth the solution around high gradient regions. Their method is
suitable for quadrilateral grids. The main defect of the methods mentioned above
is that they usually require some user-defined parameters making them problem
dependent. Many slope limiters used in the finite volume methods can be modified
to meet the needs of the DG method. Slope limiters are usually parameter free.
In [8], a limiter using maxmod functions is presented. Their limiter has the ad-
vantage over usual minmod based limiters [21], since it would not flatten smooth
extrema. Hoteit et al. [17] introduce an extension of van Leer’s slope limiter for
two-dimensional DG method using unstructured quadrangular or triangular meshes.
Unfortunately, there are two drawbacks with the use of slope limiters. One is the
possible accuracy degradation in smooth regions; the other is that the convergence
may be severely hampered. The main reason is that the limiters presented above
are non-differentiable. It could be active in near uniform region. To overcome these
drawbacks, some techniques have been adopted in practice. Venkatakrishnan [28]
devised a new limiter that may accelerate the convergence rate. But it is not mono-
tone. In addition, the constant in Venkatakrishnan’s limiter is case independent.


