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Abstract

In this paper we consider numerical simulation of incompressible viscous flow
in an infinite slip channel. Local artificial boundary conditions at an artificial
boundary are derived by the continuity of velocity and normal stress at the segment
artificial boundary. Then the original problem is reduced to a boundary value
problem on a bounded computational domain. Numerical example shows that our
artificial boundary conditions are very effective.

1. Introduction

Many boundary value problems of partial differential equations involving unbounded
domain occur in many areas of applications, e. g., fluid flow around obstacles, coupling
of structures with foundation and so on. For getting the numerical solutions of the
problems on unbounded domian, a natural approach is to cut off an unbounded part
of the domain by introducing an artificial boundary and set up an appropriate ar-
tificial boundary condition on the artificial boundary. Then the original problem is
approximated by a problem on bounded domain.

In the last ten years, boundary value problems in an unbounded domain have been
studied by many authors. For instance, Goldstein [1], Feng [2], Han and Wu [3,4],
Hagstrom and Keller [5,6], Halpern [7], Halpern and Schatzman [8], Nataf {9}, Han,
Lu and Bao [10], Han and Bao [11,12] and others have studied how to design arti-
ficial boudnary conditions for partial differential equations in an unbounded domain.
Among their results, two kinds of artificial boundary conditions are designed. One is
nonlocal artificial boundary condition, the other is local artificial boundary condition.
In engineering, they like to use the second type.

In this paper we design local artificial boundary conditions for Navier-Stokes (N-
S) equations in an infinite slip channel. Then the original problem is reduced to a
boundary value problem in a bounded domain. Moreover numerical example shows
that the artificial boundary conditions given in this paper are very effective.
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2. Navier-Stokes Equations and Oseen Equations

Let €; be an obstruction in a channel defined by ® x (0, L) and §2 = R x (0, L) \ €.
Consider the following Navier-Stokes equations

(u-V)u+yp=vAu, inf, (2.1)
vV-u=0, in, (2.2)
with boundary conditions
ou ou
U2|ey=0,L = 0, 012]2y= 0L—V(8$: +8$2)lm2 —0,, =0, —oo <z < +oo. (2.3)
ulaq, = 0, (2.4)
u(x) = too = (a,0)T, when z; — o0, (2.5)

where u = (uy,u2)T is the velocity, p is the pressure, v > 0 is the kinematic viscosity,
r = (z1,22)7 is coordinate, @ > 0 is a constant and o is the tangential stress on the
wall. Obviously condition (2.3) is equivalent to the following condition

8'LL1
0xq

Taking two constants b < ¢, such that €; C (b,c) x (0, L), then Q is divided into
three parts (2, Q07 and €, by the artificial boundary 'y, = {x € R? |21 = b,0 <z < L}
and T, ={z € R? | 1 =¢, 0 < xy < L} with

Izz =0,L = ’U,glxzzo,L =0, —oo <z < -4o00. (26)

W={reR’| ~co<zy <b 0<zy<L}
QT={ze§R2|b<x1<c, 0<xy < LY\,
Q={zecR?|c<z <+oo, 0<z2 <L}

When |b| and ¢ are sufficiently large, in the domain Q3 U Q. the velocity u is almost
constant vector ue. So the N-S equations (2.1)-(2.2) can be linearized in domain 2.
(and ), namely the solution (u,p) of problem (2.1)-(2.5) approximately satisfies the
following problem

ou
ag— +vyp=vAu, in Q. (2.7)
Ty
7w =0, in ., (2.8)
8U1
B2y 2 lep=0,L = Uzla,=0,, =0, ¢ <z <400, (2.9)
u(x) = oo = (@,0)T, when z; — +o0. (2.10)

In [13], the author obtained general solution of the problem (2.7)-(2.10)

- Z [ame (£179) L/\njﬂ(rm) bmeA— (m)(wl_C)} CcOS m’zab s
" (2.11)
Z [ DT (g1 —c) +b, e)\ (m)(x1— c)] sin T{E, (2.12>

m=1




