SERIES REPRESENTATION OF DAUBECHIES' WAVELETS*

X.G. Lu

(Department of Applied Mathematics, Tsinghua University, Beijing, China)

Abstract

This paper gives a kind of series representation of the scaling functions ϕ_N and the associated wavelets ψ_N constructed by Daubechies. Based on Poission summation formula, the functions $\phi_N(x+N-1)$, $\phi_N(x+N)$, \cdots , $\phi_N(x+2N-2)(0 \le x \le 1)$ are linearly represented by $\phi_N(x)$, $\phi_N(x+1)$, \cdots , $\phi_N(x+2N-2)$ and some polynomials of order less than N, and $\Phi_0(x) := (\phi_N(x), \phi_N(x+1), \cdots, \phi_N(x+N-2))^t$ is translated into a solution of a nonhomogeneous vector-valued functional equation

$$\mathbf{f}(x) = \mathbf{A}_d \mathbf{f}(2x - d) + \mathbf{P}_d(x), \ x \in [\frac{d}{2}, \frac{d+1}{2}], \ d = 0, 1,$$

where $\mathbf{A}_0, \mathbf{A}_1$ are $(N-1) \times (N-1)$ -dimensional matrices, the components of $\mathbf{P}_0(x), \mathbf{P}_1(x)$ are polynomials of order less than N. By iteration, $\mathbf{\Phi}_0(x)$ is eventually represented as an (N-1)-dimensional vector series $\sum_{k=0}^{\infty} \mathbf{u}_k(x)$ with vector norm $\| \mathbf{u}_k(x) \| \leq C\beta^k$, where $\beta = \beta_N < 1$ and $\beta_N \searrow 0$ as $N \to \infty$.

1. Introduction.

In this paper we study the representation of Daubechies' wavelets. Daubechies^[1] constructed a family of compactly supported regular scaling functions $\phi_N(x)$ and the associated regular wavelets $\psi_N(x)(N \ge 2)$:

$$\psi_{N}(x) := \sum_{n=-1}^{2N-2} (-1)^{n} C_{N}(n+1) \phi_{N}(2x+n), \qquad x \in \mathbf{R},$$
(1.1)
$$\phi_{N}(x) := \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \hat{\phi}_{N}(\xi) e^{-i\xi x} d\xi, \qquad x \in \mathbf{R}, i = \sqrt{-1},$$

where $\hat{\phi}_N \in L^1(\mathbf{R})$ defined by

$$\hat{\phi}_{N}(\xi) := \frac{1}{\sqrt{2\pi}} \prod_{j=1}^{\infty} m_{N}(2^{-j}\xi), \ \hat{\phi}_{N}(0) = \frac{1}{\sqrt{2\pi}},$$
$$m_{N}(\xi) := \frac{1}{2} \sum_{n=0}^{2N-1} C_{N}(n) e^{in\xi} = \left[\frac{1}{2}(1+e^{i\xi})\right]^{N} \sum_{k=0}^{N-1} q_{N}(k) e^{ik\xi}, \tag{1.2}$$

* Received January 23, 1995.

the polynomial $\sum_{k=0}^{N-1} q_N(k) z^k$ satisfies

$$\left|\sum_{k=0}^{N-1} q_N(k) e^{ik\xi}\right|^2 = \sum_{k=0}^{N-1} \binom{k+N-1}{k} \sin^{2k}(\frac{\xi}{2}), \quad \xi \in \mathbf{R},$$
(1.3)

with $\sum_{k=0}^{N-1} q_N(k) = 1, q_N(k) \in \mathbf{R}, k = 0, 1, \dots, N-1$. It is known that^[1] for each $N \geq 2$, supp $\phi_N = [0, 2N - 1]$, supp $\psi_N = [-(N - 1), N]$ and the wavelet ψ_N generates by its dilations and translations an orthornormal basis $\{\sqrt{2^j}\psi_N(2^jx - k)\}_{j,k\in\mathbf{Z}}$ of $L^2(\mathbf{R})$. The functions ϕ_N and ψ_N have been proved to be very useful in numerical analysis^[2,3]. On the aspect of representation, however, comparing to some nonorthogonal wavelets, the wavelets ψ_N and (any) other orthogonal regular wavelets seem to be hardly written in very explicit forms. This is not strange because for any wavelet ψ , its regularity, orthogonality (i.e. orthogonality of $\{\sqrt{2^j}\psi(2^jx - k)\}_{j,k\in\mathbf{Z}}$ in $L^2(\mathbf{R})$), symmetry, support compactness and representation (in the sense of computing) can not be satisfied simultaneously. So far there are two methods for approximating or representing the scaling functions ϕ_N , both of them are based on the two–scale difference equation^[1,4,5]

$$\phi_N(x) = \sum_{n=0}^{2N-1} C_N(n)\phi_N(2x-n), \ x \in \mathbf{R},$$
(1.4)

and homogeneous iterative approximation. One method is the iterative approximation scheme $f_n = V f_{n-1}$, where V is a linear operator

$$Vf(x) := \sum_{k=0}^{2N-1} C_N(k) f(2x-k)$$

acting on a function space. The ϕ_N is therefore a fixed point of V, $V\phi_N = \phi_N$, computed by $\lim_{n \to \infty} V^n f_0(x) = \phi_N(x)$ with a suitable initial function f_0 , e.g., interpolating spline. The convergence is uniform or pointwise depending on the choice of $f_0^{[1,4]}$. Another method^[5] is similar to that scheme but with vector (matrix) forms: Let $\mathbf{\Phi}(x) = (\phi_N(x), \phi_N(x+1), \cdots, \phi_N(x+2N-2))^t, \mathbf{T}_0, \mathbf{T}_1 \in \mathbf{R}^{(2N-1)\times(2N-1)}, (\mathbf{T}_d)_{ij} = C_N(2i-j-1+d), d = 0, 1 \ (C_N(n) = 0 \ \text{for } n < 0 \ \text{or } n > 2N-1).$ Then (1.4) is written $\mathbf{\Phi}(x) = \mathbf{T}_{d_1(x)} \mathbf{\Phi}(\tau(x)), x \in [0, 1]$ since supp $\phi_N = [0, 2N-1]$. Iteratively,

$$\mathbf{\Phi}(x) = \mathbf{T}_{d_1(x)} \mathbf{T}_{d_2(x)} \cdots \mathbf{T}_{d_n(x)} \mathbf{\Phi}(\tau^n(x)), x \in [0, 1],$$

where the index $d_j(x)$ is the *j*th digit in the binary expansion for $x \in [0, 1], \tau(x)$ is the shift operator: $\tau(x) = 0.d_2(x)d_3(x)\cdots$, (see section 2). All the infinite products $\mathbf{T}_{d_1(x)}\mathbf{T}_{d_2(x)}\mathbf{T}_{d_3(x)}\cdots$ of the matrices $\mathbf{T}_0, \mathbf{T}_1$ are convergent in matrix norm and for a suitable initial function $\mathbf{v}_0(x) \in \mathbf{R}^{2N-1}$,

$$\mathbf{\Phi}(x) = \lim_{n \to \infty} \mathbf{T}_{d_1(x)} \mathbf{T}_{d_2(x)} \cdots \mathbf{T}_{d_n(x)} \mathbf{v}_0(\tau^n(x)), \ x \in [0, 1].$$
(1.5)

Both the schemes can achieve approximation degree as $O(2^{-\alpha n})(n \to \infty), \alpha > 0$. In this paper we give a different method to represent (approximate) the scaling functions ϕ_N