LONG TIME ASYMPTOTIC BEHAVIOR OF SOLUTION OF DIFFERENCE SCHEME FOR A SEMILINEAR PARABOLIC EQUATION (II)*1)

Hui Feng

(Shenzhen University Normal College, Shenzhen 518060, China; Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O.Box 8009, Beijing 100088, China)

Long-jun Shen

(Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O.Box 8009, Beijing 100088, China)

Abstract

In this paper we prove the solution of explicit difference scheme for a semilinear parabolic equation converges to the solution of difference scheme for the relevant nonlinear stationary problem as $t \to \infty$. For nonlinear parabolic problem, we obtain the long time asymptotic behavior of its discrete solution which is analogous to that of its continuous solution. For simplicity, we discuss one-dimensional problem.

 $\mathit{Key\ words}$: Asymptotic behavior, Explicit difference scheme, Semilinear parabolic equation.

1. Introduction

Let $\Omega = (0, l), f(x) \in H^1(\Omega), u_0(x) \in H^2(\Omega) \cap H^1_0(\Omega), \phi(u) = u^3$, we consider the following initial-boundary value problem:

$$\begin{cases}
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \phi(u) + f(x) & \text{in } \Omega \times R_+ \\
u(0,t) = u(l,t) = 0 \\
u(x,0) = u_0(x), \quad x \in \Omega.
\end{cases}$$
(1.1)

By the usual approach^[1-4] we can get the global existence of the solution of (1.1), furthermore, the solution of (1.1) converges to the solution of the following stationary problem (1.2) as $t \to \infty$.

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} - \phi(u) + f(x) = 0 & in \quad \Omega \\ u(0, t) = u(l, t) = 0. \end{cases}$$
 (1.2)

^{*} Received July 5, 1996.

¹⁾The Project is supported by China Postdoctoral Science Foundation and the Science Foundation of Academy of Engineering Physics of China

In [6], [7], the authors considered the explicit scheme for (1.1) as f(x) = 0 and only the estimate in L_2 for discrete solution was obtained.

In this paper we prove that the solution of explicit difference scheme for (1.1) converges to the solution of difference scheme for (1.2) as $t \to \infty$.

2. Finite Difference Scheme

The domain Ω is divided into small segments by points $x_j=jh$ $(j=0,1,\cdots,J),$ where $Jh=l,\ J$ is an integer and h is the stepsize. Let Δt be time stepsize. For any function w(x,t) we denote the values $w(jh,n\Delta t)$ by w_j^n $(0\leq j\leq J,\ n=0,1,2,\cdots)$ and denote the discrete function $w_j^n(0\leq j\leq J,\ n=0,1,2,\cdots)$ by w_h^n . We introduce the following notations: $\Delta_+w_j^n=w_{j+1}^n-w_j^n$ $(0\leq j\leq J-1,n=0,1,2,\cdots)$ and $\Delta_-w_j^n=w_j^n-w_{j-1}^n$ $(1\leq j\leq J,n=0,1,2,\cdots)$. We denote the discrete function $\frac{\Delta_+w_j^n}{h}$ $(0\leq j\leq J-1,n=0,1,2,\cdots)$ by δw_h^n . Similarly, the discrete function $\frac{\Delta_+w_j^n}{h^2}$ $(0\leq j\leq J-2,n=0,1,2,\cdots)$ is denoted by $\delta^2w_h^n$.

Denote the scalar product of two discrete functions u_h^n and v_h^m by $(u_h^n, v_h^m) = \sum_{j=0}^J u_j^n v_j^m h$.

For $2 \ge k \ge 0$, define discrete norms $\|\delta^k w_h^n\|_p = \Big(\sum_{j=0}^{J-k} \Big|\frac{\Delta_+^k w_j^n}{h^k}\Big|^p h\Big)^{\frac{1}{p}}, +\infty > p > 1$

and
$$\|\delta^k w_h^n\|_{\infty} = \max_{j=0,1,\cdots,J-k} \left| \frac{\Delta_+^k w_j^n}{h^k} \right|.$$

The difference equation associate with (1.1) is:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{\Delta_+ \Delta_- u_j^n}{h^2} - \phi(u_j^n) + f_j$$
 (2.1)

for $j = 1, \dots, J - 1$ and $n = 1, 2, \dots, m$, where $f_j = f(x_j), j = 1, \dots, J - 1$,

The boundary condition of (2.1) is of the form $u_0^n = u_J^n = 0$.

The discrete form corresponding to (1.2) is:

$$\frac{\Delta_{+}\Delta_{-}u_{j}^{*}}{h^{2}} - \phi(u_{j}^{*}) + f_{j} = 0, \quad 0 < j < J$$

$$u_{0}^{*} = u_{J}^{*} = 0$$
(2.2)

Let the discrete function u_h^n and u_h^* be the solution of difference equation (2.1) and (2.2) respectively. For $n=0,1,2,\cdots$, the discrete function $v_h^n=\{v_j^n\mid j=0,1,\cdots,J\}$ is defined as $v_j^n=u_j^n-u_j^*(j=0,1,\cdots,J)$. Then v_h^n satisfies

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} = \frac{\Delta_+ \Delta_- v_j^n}{h^2} - [(u_j^n)^3 - (u_j^*)^3]$$
 (2.3)

for $j = 1, \dots, J - 1$ and $n = 0, 1, 2, \dots$ Obviously, $v_0^n = v_J^n = 0, n = 0, 1, 2, \dots$