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Abstract

In this paper we prove the solution of explicit difference scheme for a semilinear
parabolic equation converges to the solution of difference scheme for the relevant
nonlinear stationary problem as t → ∞. For nonlinear parabolic problem, we ob-
tain the long time asymptotic behavior of its discrete solution which is analogous to
that of its continuous solution. For simplicity, we discuss one-dimensional problem.
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1. Introduction

Let Ω = (0, l), f(x) ∈ H1(Ω), u0(x) ∈ H2(Ω) ∩H1
0 (Ω), φ(u) = u3, we consider the

following initial-boundary value problem:




∂u

∂t
=

∂2u

∂x2
− φ(u) + f(x) in Ω×R+

u(0, t) = u(l, t) = 0
u(x, 0) = u0(x), x ∈ Ω.

(1.1)

By the usual approach[1−4] we can get the global existence of the solution of (1.1),
furthermore, the solution of (1.1) converges to the solution of the following stationary
problem (1.2) as t →∞.





∂2u

∂x2
− φ(u) + f(x) = 0 in Ω

u(0, t) = u(l, t) = 0.
(1.2)
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In [6], [7], the authors considered the explicit scheme for (1.1) as f(x) = 0 and only
the estimate in L2 for discrete solution was obtained.

In this paper we prove that the solution of explicit difference scheme for (1.1)
converges to the solution of difference scheme for (1.2) as t →∞.

2. Finite Difference Scheme

The domain Ω is divided into small segments by points xj = jh (j = 0, 1, · · · , J),
where Jh = l, J is an integer and h is the stepsize. Let ∆t be time stepsize. For any
function w(x, t) we denote the values w(jh, n∆t) by wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·)
and denote the discrete function wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·) by wn
h . We introduce

the following notations: ∆+wn
j = wn

j+1 − wn
j (0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) and

∆−wn
j = wn

j − wn
j−1 (1 ≤ j ≤ J, n = 0, 1, 2, · · ·). We denote the discrete function

∆+wn
j

h
(0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) by δwn

h . Similarly, the discrete function
∆2

+wn
j

h2

(0 ≤ j ≤ J − 2, n = 0, 1, 2, · · ·) is denoted by δ2wn
h .

Denote the scalar product of two discrete functions un
h and vm

h by (un
h, vm

h ) =
J∑

j=0

un
j vm

j h.

For 2 ≥ k ≥ 0, define discrete norms ‖δkwn
h‖p =

( J−k∑

j=0

∣∣∣
∆k

+wn
j

hk

∣∣∣
p
h
)1

p , +∞ > p > 1

and ‖δkwn
h‖∞ = max

j=0,1,···,J−k

∣∣∣
∆k

+wn
j

hk

∣∣∣.
The difference equation associate with (1.1) is:

un+1
j − un

j

∆t
=

∆+∆−un
j

h2
− φ(un

j ) + fj (2.1)

for j = 1, · · · , J − 1 and n = 1, 2, · · · · · ·, where fj = f(xj), j = 1, · · · , J − 1,
The boundary condition of (2.1) is of the form un

0 = un
J = 0.

The discrete form corresponding to (1.2) is:

∆+∆−u∗j
h2

− φ(u∗j ) + fj = 0, 0 < j < J (2.2)

u∗0 = u∗J = 0

Let the discrete function un
h and u∗h be the solution of difference equation (2.1) and

(2.2) respectively. For n = 0, 1, 2, · · ·, the discrete function vn
h = {vn

j | j = 0, 1, · · · , J}
is defined as vn

j = un
j − u∗j (j = 0, 1, · · · , J). Then vn

h satisfies

vn+1
j − vn

j

∆t
=

∆+∆−vn
j

h2
− [(un

j )3 − (u∗j )
3] (2.3)

for j = 1, · · · , J − 1 and n = 0, 1, 2, · · · Obviously, vn
0 = vn

J = 0, n = 0, 1, 2, · · ·


