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ON RAYLEIGH QUOTIENT MATRICES: THEORY ANDAPPLICATIONS�Xin-guo Liu(Department of Applied Mathematis Oean University of Qingdao, Qingdao 266003, China)AbstratMany authors have studied the Rayleigh quotient and Rayleigh quotient ma-trix. This paper onsists of two parts. First, generalizations of some results on theRayleigh quotient are proved. Seond, we give some appliations of these theoret-ial results.Key words: Rayleigh quotient Matrix, Eigenvalue, Approximation.1. IntrodutionThroughout this paper we shall use the following notation. Rm�n and Cm�n denotethe sets of real and omplex m� n matries, respetively, Rn and Cn denote the setsof real and omplex n-dimentional olumn vetors, respetively. The supersript Hmeans the onjugate transpose of matrix. In is the n� n identity matrix, and 0 is thenull matrix. R(A) stands for the olumn spae of a matrix A; �(A) denotes the set ofthe eigenvalues of matrix A. �(A;B) denotes the set of the generalized eigenvalues of aregular matrix-pair fA;Bg. �(A) the set of the singular values of matrix A:�min(A) and�max(A) denote the smallest and largest eigenvalue of Hermitian matrix A, respetively.�min(A) is the smallest singular value of matrix A: k k refers to a uniformly generalized,unitarily invariant norm for matries. k k2 denotes the Eulidean norm for vetorsand spetral norm for matries, respetively. k kF is the Frobenius norm. For X1,Y1 2 Cm�p with XH1 X1 = Y H1 Y1 = Ip, the matrix �(R(X1); R(Y1)) is de�ned by�(R(X1); R(Y1)) = aros(XH1 Y1Y H1 X1)1=2 � 0Let A 2 Cn�n be a Hermitian matrix, and Y1 2 Cn�p satisfy Y H1 Y1 = Ip. Then thematrix H1 = Y H1 AY1 is alled the Rayleigh quotient matrix of A with respet to Y1. Ifp = 1, then yH1 Ay1 is alled the Rayleigh quotient of A respet to y1.First of all we ite some important results on the Rayleigh quotient. let A be n�nHermitian matrix, and �(A) = f�jgnj=1, moreover, let y1 2 Cn with ky1k2 = 1, and letAx1 = �1X1; kX1k2 = 1; X1 2 Cn�1 = yH1 Ay1; r = Ay1 � y1�1�Reeived July 5, 1996.



630 X.G. LIU� = arosjyH1 X1j; 0 � � � �=2Æ = min2�j�n j�j � �1j; � = max j�j � �1jd = min2�j�n j�j � �1j; D = max2�j�n j�j � �1j; 2 � j � n:Some elementary results are given in the following theorem, whih delineates themost important relations between sin �, krk2 and �1 � �1.Theorem[11℄. sin � � krk2=Æ (if Æ > 0) (1.1)krk2 � �sin �p1� sin2 � (if sin � < 1) (1.2)j�1 � �1j � krk22=Æ (ifÆ > 0; j�1 � �1j < j�j � �1j); (1.3)j�1 � �1j � D sin2 � (1.4)j�1 � �1j � krk2 sin �p1� sin2 � (if sin � < 1) (1.5)The inequalities (1:1){(1:5) have been extended to the ase p > 1 by Sun[10;11℄, Li[5℄,Liu & Xu[6℄, and Liu[7℄. In this paper, we shall give some further generalizations of theinequalities (1:1){(1:5) and appliations of these theoretial results.2. Generalizations of the Rayleigh Quotient Matrix TheoryIn this setion, some extentions of the inequalities (1.1){(1.5) are given. We shallstudy the eigenproblem, generalized eigenvalue problem and singular value problem.2.1. Eigenproblem: p = 1Let A 2 Cn�n, y1 2 Cn with ky1k2 = 1, and let�1 = yH1 Ay1; r = Ay1 � y1u1; r0 = AHy1 � y1��1Let the Shur deomposition of A beA = Q� �1 aH0 A1 �QH ; Q = [q1; Q1℄; QHQ = 1nDenote Æ = sep(�1; A1); � = aros jyH1 q1j; 0 � � � �=2�PS � = QHy1; � = kA1 � �1In�1k2; D = kA1 � �1In�1k2Theorem 1. (1) sin � � krk2=Æ; (if Æ > 0) (2.1)(2)krk2 � qD2 + kak22 sin �: (2.2)


