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Abstract. An axiomatic approach to the numerical approximation Y of

some stochastic process X with values on a separable Hilbert space H is pre-

sented by means of Lyapunov-type control functions V . The processes X and

Y are interpreted as flows of stochastic differential and difference equations,

respectively. The main result is the proof of some extensions of well-known de-

terministic principle of Kantorovich-Lax-Richtmeyer to approximate solutions

of initial value differential problems to the stochastic case. The concepts of

invariance, smoothness of martingale parts, consistency, stability, and contrac-

tivity of stochastic processes are uniquely combined to derive efficient conver-

gence rates on finite and infinite time-intervals. The applicability of our results

is explained with drift-implicit backward Euler methods applied to ordinary

stochastic differential equations (SDEs) driven by standard Wiener processes

on Euclidean spaces H = Rd along functions such as V (x) =
∑k

i=0 cix
2i. A

detailed discussion on an example with cubic nonlinearity from field theory

in physics (stochastic Ginzburg-Landau equation) illustrates the suggested ax-

iomatic approach.
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1. Introduction

Many dynamic problems in Natural Sciences, Engineering, Environmental Sci-
ences and Econometrics lead to models governed by nonlinear and dissipative sto-
chastic ordinary and partial differential systems. These systems are explicitly solv-
able very rarely. Thus one has to resort to numerical approximations. In determinis-
tic theory there are well-known principles for the approximation of their solutions in
appropriate Banach spaces. Two of them are the principles of Kantorovič [17], [11]
and Lax and Richtmeyer [24], [34], combining stability, consistency and convergence
for well-posed problems. However, in the stochastic case, there is substantially less
known about their counterparts. We are going to continue our works exhibited in
[35] - [46] by establishing basic approximation principles for stochastic processes
X, Y which have values in random Hilbert spaces H or Banach spaces with norms
defined via subadditive pseudo-bilinear forms. As the simplest application we bear
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in mind the case of stochastic ordinary differential equations (SDEs) and their nu-
merical approximations with variable step sizes. (An application to some types of
stochastic partial differential equations (SPDEs) with appropriate relation between
space- and time-discretization for their approximations is conceivable too, but left
to future work). In this paper the time-evolution of the global discretization-error is
considered without taking into account any discretization of the state space. Note
that the herein suggested axiomatic approach to the analysis of numerical approx-
imations is especially efficient within the framework of “eigenfunction approach”
applied to quasilinear SPDEs.

For the description of the approximation problem we assume the following. Fix
a complete probability space (Ω,F , (Ft)0≤t≤T ,P) with deterministic finite time-
interval [0, T ]. Let H = H(ω) be a separable random Hilbert space with (Ft)0≤t≤T -
adapted scalar product < ., . >H and real numbers as its scalars, and let µ be any
nonrandom, σ-finite, positive measure on ([0, T ],B([0, T ])). Here B(.) represents
the σ-field of all Borel-sets of the inscribed set. X = (Xt(ω))0≤t≤T and Y =
(Yt(ω))0≤t≤T denote two (Ft)-adapted stochastic processes on the given probability
space with values in one and the same Hilbert space H. Then, obviously, the vector
space

H2([0, T ], µ,H) :=





X = (Xt(ω))0≤t≤T :

Xt(ω) ∈ H(ω) for all times t,
Xt is (Ft,B(H))−measurable,
X cadlag with respect to time t,∫ T

0
E < Xt, Xt >H dµ(t) < +∞





forms a Hilbert space with scalar product

< X,X >H2 :=
∫ T

0

E < Xt, Xt >H dµ(t)

and real numbers as its scalars. The naturally induced norms are given by

||X||H :=
√

< X,X >H , ||X||H2 :=
√

< X,X >H2 .

We are interested to tackle the approximation problem of X by Y (and also Y by
X, thanks to the inherent symmetry) on this space, in particular, on the subset

IDT =
{

X ∈ H2([0, T ], µ,H) : sup
0≤t≤T

E < Xt, Xt >H< +∞
}

.

Furthermore, let [K]− ≥ 0 denote the negative part of K, and [K]+ ≥ 0 its positive
part such that we have K =[K]+− [K]−.

The paper is organized as follows. Section 2 commences with the statement of
main concepts and assumptions to prove a fairly general approximation theorem
for convergence rates of numerical approximations with variable step sizes. In
Sections 3 and 4 we present two versions of this theorem for the most general and
dissipative case. The main purpose of this paper is to publish a fairly complete
proof of universal error estimates for the approximation of some Hilbert-space-
valued stochastic processes while incorporating information on certain Lyapunov-
function(al)s V = V (x). This significantly extends the applicability of our original
work [45] where we only considered the very restricted case of V (x) = 1+||x||2 from
practical point of view (cf. example in Section 6.2). The main theorems 3.1 and 4.1
have already been formulated in [44], but without any detailed proof-steps. Here
the complete proof incorporating the role of Lyapunov-functions V (x) (much more
general than V (x) = 1 + ||x||2) is presented by dividing it into a series of auxiliary
lemmas as done in Section 5. Section 6 briefly discusses the fairly transparent case
of ordinary stochastic differential equations and drift-implicit Euler methods in Rd,


