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Abstract

A combined Legendre spectral-finite element approximation is proposed for
solving two-dimensional unsteady Navier-Stokes equation. The artificial compress-
ibility is used. The generalized stability and convergence are proved strictly. Some
numerical results show the advantages of this method.
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1. Introduction

There is much literature concerning numerical solutions of Navier-Stokes equations,
e.g., see [1-4]. For semi-periodic problems, some author used combined Fourier spectral-
finite difference and Fourier spectral-finite element approximations (see[5-8]). In fluid
dynamics, most of practical problems are fully non-periodic. But the sections of domain
might be rectangular in certain directions. For example, the fluid flow in a cylindrical
container. In this paper, we consider combined Legendre spectral-finite element ap-
proximation for the two-dimensional, non-periodic, unsteady Navier-Stokes equation.
The method in this paper can raise the accuracy by Legendre spectral approximation
in some directions and so saves work. On the other hand, such approximation is suit-
able for complex geometry in the remaining directions. Surely it is not necessary to
use this approach for such two-dimensional problem. But it is easy to generalize it to
three-dimensional problems with complex geometry.

2. The Scheme

Let I, = {z/0 <z <1}, I, = {y/ — 1 <y < 1} and Q = I, x I, with
the boundary 9€2. The speed vector and the pressure are denoted by U(x,y,t) and
P(x,y,t) respectively. v > 0 is the kinetic viscosity. Ug(x,y), Py(z,y) and f(z,y,t)
are given functions. Let T > 0,0, = %,81 = %’ and 9, = % The Navier-Stokes
equation is as follows

U+ (U-V)U +VP —vV3U = §, in Q x (0,7],
V.-U=0, in Q x (0,77, (2.1)
U(T,y,O) = Uﬂ(zay)v P(.Z',y,O) = P()(l',y), in
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Suppose that the boundary is a non-slip wall and so U = 0 on 0f). In addition, P
satisfies the following normalizing condition:

/ P(z,y,t)dzdy = 0, vt € [0,T].
Q

Let D be an interval (or a domain) in R!(or R?). We denote by (-,-)p and ||-||p the
usual inner product and norm of L?(D). For simplicity, (-,-)q and || - || are replaced
by (-,-) and || - || respectively. H"(D) and H{(D) denote the usual Hilbert spaces with
the usual inner products and norms. We also define

L4(D) = {ne 12D) / [ nap=0}.

To tackle the incompressible constraint (i.e., the second equation of (2.1)), we adopt
the idea of artificial compression, that is, to approximate the incompressible condition
by the equation

oP
g +V U =0

where 8 > 0 is a small parameter.
In order to approximate the nonlinear term, we introduce a trilinear form J(-,-,-) :

[(H'(22))%]® — R! as follows:

T .6 = 3l((e- 9)m.8) -~ (¢ Ve

Clearly, we have

J(n,9,8) + J(& p.n) =0, (2.2)
and if V- ¢ =0, then

J(n,¢,8) = ((¢- V)n, ).

Now we construct the scheme. For any integer k£ > 0, we denote by Py the set of all
polynomials of degree < k, defined on R'. Suppose N is a positive integer, we define

Vn(ly) ={v(y) € Pn / v(-1) = o(1) = 0}.

Next, we divide I, into M}, subintervals with the nodes 0 = 2o <z < --- < zp, = 1.

Let I, = (z;_1,2;),hy =2, — 21, h = max h;and b’ = min h;. Assume that there
1<I< M), 1<I< M,

exists a positive constant d independent of the divisions of I,, such that h/h' < d. Let
Sh(ly) = {v(@) [ v(x) [1,€ Pr,1 <1< My}, Sp(L) = Sk(L) () Hy(Ly).

The trial function spaces for the speed and the the pressure are defined respectively as
follows

Xp () = {8371 (L) ® Viv (L)} x {8 (1) ® Viv(L)},

Yiin(Q) = {55 (1) ® Py—2(I,)} (| L5 ().



