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COMBINED LEGENDRE SPECTRAL-FINITE ELEMENTMETHOD FOR THE TWO-DIMENSIONAL UNSTEADYNAVIER-STOKES EQUATION�Song-nian He Cai-ping Yang(Department of Basi
 Courses, Civil Aviation University of China, Tianjin 300300, China)Abstra
tA 
ombined Legendre spe
tral-�nite element approximation is proposed forsolving two-dimensional unsteady Navier-Stokes equation. The arti�
ial 
ompress-ibility is used. The generalized stability and 
onvergen
e are proved stri
tly. Somenumeri
al results show the advantages of this method.Key words: Navier-Stokes equation, Combined Legendre spe
tral-�nite elementapproximation. 1. Introdu
tionThere is mu
h literature 
on
erning numeri
al solutions of Navier-Stokes equations,e.g., see [1-4℄. For semi-periodi
 problems, some author used 
ombined Fourier spe
tral-�nite di�eren
e and Fourier spe
tral-�nite element approximations (see[5-8℄). In 
uiddynami
s, most of pra
ti
al problems are fully non-periodi
. But the se
tions of domainmight be re
tangular in 
ertain dire
tions. For example, the 
uid 
ow in a 
ylindri
al
ontainer. In this paper, we 
onsider 
ombined Legendre spe
tral-�nite element ap-proximation for the two-dimensional, non-periodi
, unsteady Navier-Stokes equation.The method in this paper 
an raise the a

ura
y by Legendre spe
tral approximationin some dire
tions and so saves work. On the other hand, su
h approximation is suit-able for 
omplex geometry in the remaining dire
tions. Surely it is not ne
essary touse this approa
h for su
h two-dimensional problem. But it is easy to generalize it tothree-dimensional problems with 
omplex geometry.2. The S
hemeLet Ix = fx = 0 < x < 1g; Iy = fy = � 1 < y < 1g and 
 = Ix � Iy withthe boundary �
. The speed ve
tor and the pressure are denoted by U(x; y; t) andP (x; y; t) respe
tively. � > 0 is the kineti
 vis
osity. U0(x; y); P0(x; y) and f(x; y; t)are given fun
tions. Let T > 0; �t = ��t ; �x = ��x ; and �y = ��y : The Navier-Stokesequation is as follows8>>><>>>: �tU + (U � r)U +rP � �r2U = f; in 
� (0; T ℄;r � U = 0; in 
� (0; T ℄;U(x; y; 0) = U0(x; y); P (x; y; 0) = P0(x; y); in 
 (2:1)� Re
eived November 8, 1995.



496 S.N. HE AND C.P. YANGSuppose that the boundary is a non-slip wall and so U = 0 on �
: In addition, Psatis�es the following normalizing 
ondition:Z
 P (x; y; t) dxdy = 0; 8t 2 [0; T ℄:Let D be an interval (or a domain) in R1(or R2). We denote by (�; �)D and k �kD theusual inner produ
t and norm of L2(D): For simpli
ity, (�; �)
 and k � k
 are repla
edby (�; �) and k � k respe
tively. Hr(D) and Hr0(D) denote the usual Hilbert spa
es withthe usual inner produ
ts and norms. We also de�neL20(D) = f� 2 L2(D) = ZD � dD = 0 g:To ta
kle the in
ompressible 
onstraint (i.e., the se
ond equation of (2.1)), we adoptthe idea of arti�
ial 
ompression, that is, to approximate the in
ompressible 
onditionby the equation � �P�t +r � U = 0where � > 0 is a small parameter.In order to approximate the nonlinear term, we introdu
e a trilinear form J(�; �; �) :[(H1(
))2℄3 ! R1 as follows:J(�; '; �) = 12 [((' � r)�; �)� ((' � r)�; �)℄:Clearly, we have J(�; '; �) + J(�; '; �) = 0; (2:2)and if r � ' = 0; then J(�; '; �) = ((' � r)�; �):Now we 
onstru
t the s
heme. For any integer k � 0, we denote by Pk the set of allpolynomials of degree � k, de�ned on R1. Suppose N is a positive integer, we de�neVN (Iy) = fv(y) 2 PN = v(�1) = v(1) = 0g:Next, we divide Ix into Mh subintervals with the nodes 0 = x0 < x1 < � � � < xMh = 1:Let Il = (xl�1; xl); hl = xl�xl�1; h = max1�l�Mh hl and h0 = min1�l�Mh hl: Assume that thereexists a positive 
onstant d independent of the divisions of Ix, su
h that h=h0 � d: Let~Skh(Ix) = fv(x) = v(x) jIl2 Pk; 1 � l �Mhg; Skh(Ix) = ~Skh(Ix)\H10 (Ix):The trial fun
tion spa
es for the speed and the the pressure are de�ned respe
tively asfollows Xkh;N (
) = fSk+1h (Ix)
 VN (Iy)g � fSk+2h (Ix)
 VN (Iy)g;Y kh;N (
) = f ~Skh(Ix)
PN�2(Iy)g\L20(
):


