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Abstract

Interior error estimates are derived for nonconforming stable mixed finite ele-
ment discretizations of the stationary Stokes equations. As an application, interior
convergences of difference quotients of the finite element solution are obtained for
the derivatives of the exact solution when the mesh satisfies some translation in-
variant condition. For the linear element, it is proved that the average of the
gradients of the finite element solution at the midpoint of two interior adjacent
triangles approximates the gradient of the exact solution quadratically.
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1. Introduction

Interior error estimates for finite element discretizations (conforming) were first
introduced by Nitsche and Schatz' for second order scalar elliptic equations in 1974.
They proved that the local accuracy of the finite element approximation is bounded
in terms of two factors: the local approximability of the exact solution by the finite
element space and the global approximability measured in an arbitrarily weak Sobolev
norm on a slightly larger domain. Since then, interior estimates of this nature have
been obtained by Douglas, Jr. and Milner for mixed methods of the second order
scalar elliptic equations!®, Douglas, Jr., Gupta, and Li for the hybrid method!”, by
Gastaldi for a family of elements for the Reissner-Mindlin plate model®?, by Arnold
and Liu for conforming finite element methods for the Stokes equations!!, and by Liu for

nonconforming methods for the second order elliptic equations!'?!

. For a comprehensive
review on this subject, see [17].

Recently, some quite interesting applications of interior estimates have been found
in the areas of a posteriori error analysis and adaptive mesh refinement. In 1988
Eriksson and Johnson!'" introduced two a posteriori error estimators based on local
difference quotients of the numerical solution. Their analysis was based on the inte-
rior convergence theory in [14] and [15]. In 1991, Babuska and Rodriguez/? studied
the estimators of Zhu and Zienkiewicz'%, [20] by using the interior estimate results of

Bramble and Schatz!'%l. For other applications in this direction, please refer to [9], [10]
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and [3]. Through these investigations, it is now widely believed that the asymptotic
exactness of a posteriori estimators essentially depends on some kind of superapproxi-
mation property of the finite element method. Interior error estimates, however, offer
a standard approach to derive interior superconvergences.

The aim of this paper is to establish interior error estimates for nonconforming
finite element approximations to solutions of the Stokes equations. Note that noncon-
forming methods are attractive for the Stokes problems for two reasons: (1) the inf-sup
condition is easy to satisfy; (2) divergence-free nodal bases can be constructed. In
addition, since the pressure can be eliminated first (when discontinuous functions are
used to approximate the pressure), the velocity can be found through solving a positive
system and thereafter, some preconditioned multigrid methods may be incorporated
for constructing fast solvers.

The method used here and the structure of this paper closely follows that in [1].
Section 2 presents notations and preliminaries. Section 3 introduces hypotheses for
the finite element spaces, which actually apply for both nonconforming and conforming
methods. In Section 4, we introduce the interior equations and derive some basic
properties of their solutions. Section 5 gives the precise statement of our main result
and its proof. In Section 6 we prove interior convergences of difference quotients of the
finite element solution to the derivatives of the exact solution when the finite element
space is defined over meshes with certain translation invariant property. An interior
superconvergence is obtained as an example application.

2. Notations and Preliminaries

Let © denote a bounded domain in R? and 02 its boundary. We shall use the usual
standard L2-based Sobolev spaces H™ = H™(2), m € Z, with the norm || - ||, o. Recall
that for m € N, H ™ denotes the normed dual of /™, the closure of C§e(Q2) in H™.
We use the notation (-, -) for both the L?(€)-innerproduct and its extension to a pairing
of H™ and H™™. 1f 0 = |9 for some disjoint open sets §2;, then let H"(€2) = {u €

J
L2(92) and ulo, € H™(%), for all j} with the norm [[ull, o = (3 [lull2,0,)"". 16 is
J
any subspace of L?, then X denotes the subspace of elements with average value zero.
We use boldface type to denote 2-vector-valued functions, operators whose values are
ector-valued or tensor-valued functions, and spaces of vector-valued functions. This is
illustrated in the definitions of the following standard differential operators:

op/0x _ (0¢1/0x O¢1/0y
8;0/81/) - grad ¢ = <8¢>2/8:r Bcbz/@y) '

For any function ¢ that is differentiable on each ; where Q = U Q;, a family of disjoint

div¢ = 0¢1/0x + O¢o /0y, grad p = <

i
open sets €;, we define the piecewise version (with notation divy) of its divergence to
be the function obtained by computing div¢ element-wise. The piecewise version of the
gradient operator can be defined similarly and is denoted by grady,.



