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Abstract

In the theoretical study of numerical solution of stiff ODEs, it usually assumes
that the righthand function f(y) satisfy one-side Lipschitz condition

< f(y) —f(Z)7y—Z >§ VI||y_Z||27f 10 g c" — Om7
or another related one-side Lipschitz condition
[F(Y)~F(Z),Y — Z]p <V'||Y — Z||3,,F : Q* C C™ — C"™*,

this paper demonstrates that the difference of the two sets of all functions satisfying
the above two conditions respectively is at most that v’ — v" only is constant
independent of stiffness of function f.
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In the theoretical study of numerical solution of stiff ODEs, authors usually assume
that the righthand function f of

y'(t) = fly®), ylto) =yo, tE€l[b,T], f:QCC"—=C™, (1)

satisfy the one-side Lipschitz condition1:%]

< fly) — fl2)yy —z><vlly — 2% Vy,z € Q (2)
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however, in some cases(such as study of existence and uniqueness of the solution), the

function f is assumed to satisfy another one-side Lipschitz condition

[F(Y) = F(2),Y — Zlp <v|Y - Z]}, (3)
s times
where Q is a convex domain in C™, Y = (yl,yT ... ¢y € Q=0 x QA x-xQ,
FY)=(f"(y1), fT(y2), -, (ys))T, < -,- > is an inner-product in C™, || - || is the cor-
responding norm, D = (d;;)is a s-by-s Hermite positive definite matrix, [F(Y), Z]p =
>ij=1dij < f(¥i),z; >, || - [[p is the corresponding norm.
Definition:

Fiw) ={f(y) | Re < f(y) = f(2).y =z >< vy — 2%, f'(y) is existed, ¥y, z € Q},

Fo(v)={f(y) | Re[F(Y)—F(Z),Y ~Z]p < V||Y7Z||%,f'(y) is existed, VY, Z € Q°},

where f’(y) is a Frechet-derivative of f(y) with respect to y. Up to date, there is no
result for the relation of F;(v) and Fu(v). The goal of this paper is to investigate this
problem.

Theorem 1. If D is a diagonally positive definite matriz, then

Fi(v) = Fa(v).
Proof. For Vf(y) € Fo(v), it follows from the definition that
Re Z;l dii < f(yi) — f(z1),9i — 2z >= Re[F(Y) ~ F(Z),Y ~ Z]p <v|Y — Z||}, (4)
if f(y) € Fi(v), then there exist y, z € Q such that
Re < f(y) = f(2),y — 2 >> vlly — 2.
Let Y = (y",y",---,9")T and Z = (27,27,---,27)T € Q°, then
Rez dii < fy) = f(2),y — 2z >>v|Y = Z||%.

That is conflict with (4), so Fa(v) C Fi(v). On the other hand, it is obvious that
Fi(v) C Fo(v). Therefore, Fy(v) = Fa(v).

Theorem 2. Assume that the D be a Hermite positive definite matriz and f(y) =
By + B be a linear function, then f € Fi(v) < f € Fo(v).

Proof. For the inner-products < -,- > and standard inner-product (y,z) = y*z in
C™, there exists a Hermite positive definite matrix () such that

<y,z>=(y,Qz), Vy,zeC™



