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Abstract

The main purpose of the present paper is to examine the existence and lo-
cal uniqueness of solutions of the implicit equations arising in the application
of a weakly algebraically stable general linear methods to dissipative dynamical
systems, and to extend the existing relevant results of Runge-Kutta methods by
Humphries and Stuart(1994).
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1. Introduction

The numerical approximation of dissipative initial value problems on R™ by fixed
time-stepping Runge-Kutta methods has been considered by Humphries and Stuart[1],
and it was shown that the numerical solution defined by an algebraically stable method
has an absorbing set and is hence dissipative for any fixed step-size h > 0. In 1996,
Xiao[8] extended the corresponding relevant results in [1], and showed that two classes
of algebraically stable general linear methods applied to dissipative dynamical systems
on R™ are dissipative and possess an absorbing set. But the results in [8] have an
implicit assumption that the implicit equations arising in the application of the general
linear method to dissipative dynamical systems are soluble.

The main purpose of the present paper is to examine the existence and local unique-
ness of solutions of the implicit equations arising in the application of a weakly alge-
braically stable general linear methods to dissipative dynamical systems, and to extend
the existing relevant results of Runge-Kutta methods by Humphries and Stuart[1].

Consider the dissipative initial value problem on R™(cf.[1])

y'(t) = fly), t>0;  y(0) =yo€RY, (1.1)

where the map f : RN — RYN is assumed to be locally Lipschitz and continuous,
and satisfies the following condition:

<z flx) > <a-B|r|? VzeR™, (1.2)

where and throughout the following, «>0, 8 > 0, < .,. > is the standard inner product
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on R™ with the corresponding norm ||.|| denoted by |lu||* =< u,u >. By means of the
theory of ordinary differential equations, we can know that the problem (1.1) is locally
uniquely soluble with the solution y(t).

The problem (1.1)-(1.2) arises in many applications and the class defined by (1.1)-
(1.2) contains many-known problems ( such as some forms of Cahn-Hilliand equa-
tions, the Navier-Stokes equations in two dimensions, the Lorenz equations, etc.). The
problem (1.1)-(1.2) defines a dynamical system on R™ and possesses an absorbing set

B = B(0, (%)% + ¢) (i.e. an open ball with the radius (%)% + ¢ and the center 0) for

any € > 0 and a global attractor A defined by A = w(B), where w(B) is the w-limit set
of B (cf.[1]).
Consider the r-value s-stage general linear method(cf.[4,6,7]) applied to (1.1)
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where h > 0 is the given stepsize, ¢;; and o; are real constants, the vectors Y; are
the internal stages of the current step and are approximations to y(t, + p;h); the

(n)

vectors y; ~ are the external stages which contain all information from the previous
step necessary for the computation of the new approximation and are approximations
to H;(t, + v;h); y, approximates to y(t, + nh). t, = nh, p;, v; and n are real con-

stants, each H;(t,+wv;h) denotes a piece of information about the true solution y(¢). Let
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where I, is an mXxm unit matrix, the symbol A®B denotes Kronecker product of
the matrices A and B. Then the method (2.5) can be written in more compact form

Y = héllF(Y) + éuy(n—l),
y(n) = héglF(Y) + ézgy(n_l), (1.4)
Definition 1.1.(cf.[6,7]) Let k,p,q be real constants with k > 0 and pqg < 1,
G = [gi;] o real positive definite symmetric rxr matriz, D = diag(di,ds,---,ds) a

real nonnegative definite diagonal sxs matriz, furthermore, for I > 0, D denotes an
IxI nonnegative definite diagonal matriz. The method (1.3) is said to be (k,p, q)-weakly

algebraically stable (about the matrices G,D,1/J(l~))) if the matriz

_( My My
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1s nonnegative definite, where N
My = kG—CzTQGCQQ—pclTQDCm—FQS(D), My = szi = CszD—CzTQGCﬂ—pcszDCH,
My = CL D+ DCyy — CLGCyy — pCLDCY, — gD



