A SIMPLE WAY CONSTRUCTING SYMPLECTIC RUNGE-KUTTA METHODS*

Geng Sun

(Institute of Mathematics, Academia Sinica, Beijing 100080, China)

Abstract

With the help of symplecticity conditions of Partitioned Runge-Kutta methods, a simple way constructing symplectic methods is derived. Examples including several classes of high order symplectic Runge-Kutta methods are given, and showed up the relationship between existing high order Runge-Kutta methods.

Key words: Symplecticity condition, Partitioned Runge-Kutta method.

1. Introduction and Preliminaries

Let Ω be a demain in the oriented Euclidean space \mathbb{R}^{2d} of point $(p,q)=((p_1,\cdots,p_d)^T,(q_1,\cdots,q_d)^T)$. If H(p,q) is a sufficiently smooth real function defined in Ω , then the Hamiltonian system of differential equations with Hamiltonian H(p,q) is given by

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} =: f_i(p, q), \quad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} =: g_i(p, q), 1 \le i \le d.$$
 (1.1)

The integer d is called the number of degrees of freedom and Ω is the phase space. Here we assume that all Hamiltonians considered are autonomous, i.e., time- independent.

Definition 1.1. A one-step method is called symplectic if, as applied to the Hamiltonian system (1,1), the underlying formula generating numerical solutions (p^{n+1}, q^{n+1}) is a symplectic transformation, that is,

$$\frac{\partial (p^{n+1}, q^{n+1})^T}{\partial (p^n, q^n)} J \frac{\partial (p^{n+1}, q^{n+1})}{\partial (p^n, q^n)} = J, \quad \forall (p^n, q^n) \in \Omega, \tag{1.2}$$

Where $J = \begin{pmatrix} 0 & I_d \\ -I_d & 0 \end{pmatrix}$ is the standard symplectic matrix.

Definition 1.2. One step of an s-stage Partitioned Runge-Kutta (PRK) method with stepsize h and initial values (p^n, q^n) applied to (1.1) reads

$$P_i = p^n + h \sum_{j=1}^s a_{ij} F_j(P_j, Q_j), \quad Q_i = q^n + h \sum_{j=1}^s \overline{a}_{ij} G_j(P_j, Q_j),$$
 (1.3a)

^{*} Received October 16, 1996.

62 G. SUN

$$p^{n+1} = p^n + h \sum_{i=1}^s b_i F_i(P_i, Q_i), \quad q^{n+1} = q^n + h \sum_{i=1}^s \overline{b_i} G_i(P_i, Q_i),$$
 (1.3b)

Where a_{ij}, b_i and $\overline{a}_{ij}, \overline{b}_i$ represent two different Runge-Kutta schemes, $F = (f_1, f_2, \dots, f_d)^T$, $G = (g_1, g_2, \dots, g_d)^T$.

Definition 1.3. The local error of a PRK method (1.3) is defined by

$$\delta_{p_h}(t_n) = p^{n+1} - p(t_n + h), \quad \delta_{q_h}(t_n) = q^{n+1} - q(t_n + h)$$

Where (p(t), q(t)) is the exact solutions of (1.1) possing through (p^n, q^n) at t_n .

By definition 1.1, an s-stage symplectic PRK method can be characterized as follows: [7],[9],[12]

Theorem 1.4. If the coefficients of an s-stage PRK method (1.3) satisfy the relation

$$b_i = \overline{b}_i \quad for \quad i = 1, \cdots, s$$
 (1.4a)

$$b_i \overline{a}_{ij} + \overline{b}_j a_{ji} - b_i \overline{b}_j = 0 \quad \text{for} \quad i, j = 1, \dots, s, \tag{1.4b}$$

then the PRK method is symplectic.

Remark 1. Symplectic Runge-Kutta methods are a special case of symplectic PRK methods with coefficients $\overline{a}_{ij} = a_{ij}, i, j = 1, \dots, s$.

Starting from a known s-stage RK method with $b_i \neq 0 (i = 1, \dots, s)$, an s-stage symplectic PRK method can be defined uniquely as follows:^[9]

Theorem 1.5. Suppose that an s-stage RK method with coefficients $a_{ij}, b_i \neq 0$ and distinct c_i , satisfies the following simplifying assumptions

$$B(p): \sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k} \quad for \quad k = 1, 2, \dots, p,$$

$$C(\eta): \sum_{j=1}^{s} a_{ij} c_j^{k-1} = \frac{c_i^k}{k} \quad for \quad i = 1, \dots, s, k = 1, \dots, \eta,$$

$$D(\zeta): \sum_{i=1}^{s} b_i c_i^{k-1} a_{ij} = \frac{b_j}{k} (1 - c_j^k) \quad for \quad j = 1, \dots, s, k = 1, \dots, \zeta,$$

then the s-stage PRK method with coefficients a_{ij} , $\overline{b}_i = b_i$, $\overline{c}_i = c_i$ and $\overline{a}_{ij} = b_j (1 - a_{ji}/b_i)$ is symplectic and satisfies

$$\delta_{p_h}(t_n) = O(h^{r+1}), \quad \delta_{q_h}(t_n) = O(h^{r+1}),$$

i.e., at least, order $r = \min(p, 2\eta + 2, 2\zeta + 2, \eta + \zeta + 1)$.

Remark 2. By using the W-transformation of Hairer and Wanner^[5] it can be shown that the RK method with coefficients $\overline{a}_{ij} = b_j(1 - a_{ji}/b_i)$, b_i and c_i satisfies $B(p), C(\zeta)$ and $D(\eta)$.