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Abstract

In this paper, we show how to use wavelet to discretize the boundary integral
equations which are both singular and ill-conditioned. By using an explicit diagonal
preconditioning, the condition number of the corresponding matrix is bounded by
a constant, while the sparse structure speed up the iterative solving process. Using
an iterative method, one thus obtains a fast numerical algorithm to solve the
boundary integral equations.
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1. Introduction

The application of wavelets to signal and image processing has been successful. But
there are few results about numerical solution for the partial differential equations.
We think that it is enough only to use the coefficients {h,} (as a filter) in signal and
image processing, but it is not sufficient for numerical computation[”/®ll1% where we
consider wavelet as a special function series instead of a filter. Then it brings some
problems such as the complication of function value computation and the difficulty to
handle the boundary conditions[®/*3], etc. For the first problem, we have solved in [16].
For the second problem, some researchers consider the periodic problems to escape
the complicated boundary [3], others consider the boundary integral problems. In [3],
the author discussed the potential integral equation of the 2D Laplace operator, as we
know, the kernel is no-singular and well-conditioned.

In this paper we examine the feasibility of applying wavelet based numerical meth-
ods to solve elliptic equations. We use compactly supported wavelets and develop a
wavelet boundary element method to handle the boundary conditions. The boundary
element method has been firmly established as an important alternative technique to
the prevailing numerical methods of analysis in continuum mechanics!*7 and many
others which can be written as a function of a potential and whose governing equation
is the classical Laplace or Poisson equation. It reduces the problem’s dimension and
can be used when the domain is infinite. In contrast to the finite difference methods
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and finite element methods, the classical discretization of the boundary integral usually
has slow decay away from the diagonal and leads to a large non-sparse linear system.
As we know, directly applying a dense matrix to a vector requires roughly N? oper-
ations. Therefore, the efficiency induced by lowering the dimensions is distroyed by
the cost brought by the dense matrices. This problem can be solved by the wavelet
method proposed by Beylkin, Coifman and Rokhlin in [1]. According to the framework
of Zygmund-Calderon operators studied extensively in [1], if we project the integral
operator in a wavelet basis, since the basis function satisfies the vanishing moment
condition, the coefficients away from the diagonal will be small. Neglecting these small
entries yields a finger-like sparse linear system.

In this paper we mainly discuss two kinds of integral induction methods: single-layer
induction and natural boundary induction. Both of them are ill-conditioned and have
singularity in their kernels. In order to avoid these problems, we construct numerical
algorithm to avoid the singularity, and find an easily inheritable matrix D such that
D~ 'M D! will have a better condition number x. We prove that using the wavelet
basis, a diagonal matrix D yields k = O(1).

2. Boundary Integral Equations

Let Q be a domain in the plane R? and T its boundary, we discuss the Laplace
equation:

Au =0, z € (), (2.1)

with boundary conditions of Dirichlet type

u(z) = f(z) on T, (2.2)
or the Neumann type
0
g(;) —g(z) onT, (2.3)

where n is the unit outward normal to surface I'.
The Neumann problem (2.1) and (2.3) has a solution only if the consistency condi-
tion

/ g(x)dS; =0 (2.4)
r

holds and this solution is unique only to within an arbitrary additive constant.

It is well known that the above elliptic boundary-value problem can be reduced into
several kinds of integral equations. To obtain an integral equation for the solution of
the Dirichlet problem, the classical approach is to assume that the unknown function
u may be expressed solely as a single-layer potential with unknown density o,

1
w(z) = [ o(y)lIn——dS, + C, x € Q, 2.5
(@) = [ o)n s, (2:5)

where C' is a constant which will be determined later. Since the kernel in this equation
is continuous as = passes through the surface, the limit of equation (2.5) as z is taken



