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Abstract

This paper is devoted to computation of hypersonic flow of air with chemical reactions
over concave corners. A technique combining smooth transformation of domain and im-
plicit difference methods is used to overcome numerical difficulties associated with the lack
of resolution behind the shock and near the body. The implicit treatment of right hand
side terms is also an important part of our method.
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1. Introduction

We consider steady inviscid hypersonic flow of air about a concave corner including chemical
reaction effects. Computation of nonequilibrium flow is difficult because of the steep gradients
behind the shock and an entropy layer near the body. For many cases the time scale of the
chemical reactions is larger than, or close to, the time scale of the original mechanical problem
and the equilibrium chemistry model is not realistic. Therefore, it is necessary to evaluate the
kinetics of chemistry via a nonequilibrium model.

In 1975, Rakich et al. [7] applied a method of characteristics to solve supersonic inviscid
nonequilibrium flows. The 5-species, 18-reaction chemical model they described has since been
adopted by many others [1, 2, 4]. Later, Rakich et al. [8] computed the flow over a concave
corner. Although their method is accurate globally, it is less accurate locally. They found that
the calculation for the shock angle failed to converge, resulting in a complete loss of accuracy.
They were able to compute only for a short distance because of the lack of resolution near the
shock. They also found that the source term resulting from chemical reactions had a strong
effect on the shock solution. In 1991, Pandolfi et al. [4] computed the same flow introducing
generalized nonequilibrium Rankine-Hugoniot (R-H) relations at the shock instead of classical
R-H conditions. Using their technique, they were able to continue the computation to a very
large distance. In their result details occurring over a short distance behind the shock are not
given and such details are absorbed in the generalized R-H conditions.

Our goal in this paper is to design a finite difference method that will give details of the
flow near the shock and compute flow accurately for a long distance. Once this is successful,
we will be able to compute more difficult problems with stronger stiffness or steeper gradients
for any desirable distance. We will do this using a smooth coordinate transformation under
which a mesh size near boundaries represents a small physical distance while in the middle of
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the computational region it represents a large physical distance. When the mesh size in the
physical domain in one direction is very small and explicit schemes are used, the mesh size in
other direction must be small too. In order to make the computation efficient, we have used
an implicit scheme for this problem. In this way, the computations can be done efficiently with
a relatively small number of mesh points and yet the difficulty arising from lack of resolution
near the shock is overcome.

2. System of Equations

The problem we consider is hypersonic flow around bodies with chemical reactions. In our
chemical model of air only dissociation-recombination reactions, atom exchange reactions, and
bimolecular reactions are considered. Ionization is neglected. Also the vibrational excitation
of biatomic molecules is assumed half-excited so that its energy content is RT/2 [3]. The
Euler and chemical equations are strongly coupled. We begin with the Euler equations for the
steady-state configuration [4]:

V. -Vp+pV-V = 0, (1)

(V-V)V+% = 0, (2)
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Here, V', p, p and h denote the velocity vector, density, pressure and enthalpy respectively. We
neglect the diffusion of the species and the equations of the production of the species along
streamlines are as follows:

V'ti = Wi, 1= 1,2,3. (4)

! and the source term w; gives the rate of

Here, q; denotes the concentration in unit g-mole - g~
production for the i-th species.
With the same assumptions as in [4], we will describe the equations for a two dimensional

computational frame {n,£}. We introduce a {z,r}-Descartes coordinate system and let
v ‘ -
o=— and V =+Vu?+0v? (5)
u

where u and v are components of velocity in z and r directions respectively. Taking p, h, o,
q1, g2, q3 as dependent variables, we can have the following form of the Euler and the chemical
equations under the {z,r}-Descartes coordinate system :
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The system is completed by the integrated form of the energy equation

2
H = h+v7 (10)

= constant.



