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Abstract

In this paper we investigate three various algorithms for computation of generalized in-
verses which are contained in the limit expressions lim V (DT + 2I)"'U and
z2—0

liH})V (DT + zI)fl z°. These algorithms are extensions of the algorithms developed by
z—
various authors in [2], [3-4], [7-9], [16-18].
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1. Introduction and Preliminaries

The set of all m x n complex matrices of rank r is denoted by C**". By I we denote an
appropriate identity matrix. Also, Tr(A) denotes the trace of a square matrix A. By R(A) and
N (A) are denoted the range and the null space of A, respectively. Finally, adj(A) and det(A)
denote the adjoint of the matrix A and the determinant of A, respectively.

For any matrix A € C™*™ consider the following equations in X:

(1) AXA=A, (2) XAX=X, (3) (AX)*=AX, (4) (XA)'=xA4

and if m = n, also
(5) AX =XA4, (1%) AMlx = Ak

For a sequence S of {1,2,3,4,5} the set of matrices obeying the equations represented in S is
denoted by A{S}. A matrix from A{S} is called an S-inverse of A and denoted by A(S), If X
satisfies (1) and (2), it is said to be a reflexive g-inverse of A, whereas X = A is said to be the
Moore-Penrose inverse of A if it satisfies (1)-(4). The group inverse A# is the unique {1,2,5}
inverse of A, and exists if and only if ind(4) = min{k : rank(A**!)=rank(A4*)}=1. A matrix
G = AP is said to be the Drazin inverse of A if (1¥) (for some positive integer k), (2) and (5)
are satisfied.

Let there be given positive definite matrices M and N of the order m and n, respectively. For
any m xn matrix A, the weighted Moore-Penrose inverse of A is the unique solution X = Ah N
of the matrix equations (1), (2) and the following equations in X:

(3M) (MAX)* = MAX (4N) (NXA)"=NXA.
In this paper we investigate three methods for implementation of the following limit expres-
sions, related to a given matrix A of the order m x n:
L= lim V(DT + 2I)"'U, Ly = lim V(DT + 21)"'2°, (1.1)
z—0 z—0

where D, T, U and V are appropriate variable complex matrices of the order ¢ X p, p X ¢, g x m
and n X g, respectively, [ > 1 and e is an arbitrary integer. These limit expressions contain all
so far known limit representations of generalized inverses investigated in [1], [5], [6], [8], [10-15],
[18-20]. Moreover, in the case D = U, V = I we obtain the limit expression investigated in [16].
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The paper is organized as follows. In the second section we establish and investigate a general
imbedding method for computing the generalized inverses included in the limit expressions (1.1).
This method deals with a system of first-order ordinary differential equations associated to the
matrices F'(z) = (adj(DT + 21))’, H!(z) = F!(2)z! and the scalar ¢'(z) = (det(DT + 2I)). In
certain particular cases we obtain the results originated in [9], [17] and [18].

In the third section is investigated implementation of the limit representations (1.1) by
means of several sets of orthogonal vectors. This implementation is an extension of the method
introduced in [9] for implementation of the known limit representation of the Moore-Penrose
inverse.

In the last section, using a generalization of the method from [8] and [16], we introduce
a more condensed form of the Leverrier-Faddeev finite algorithm for computation of various
generalized inverses. Introduced algorithm contains known generalizations of the Leverrier-
Faddeev algorithm, available in [2], [4], [7-9] and [16-17]. A part of this method which concerns
the limit L in the single case V. = I, D = T reduces to the known generalization of the
Leverrier-Faddeev algorithm, introduced in [16].

2. A Generalized Imbedding Method

In this section we develop a generalization of the imbedding methods, introduced in [9],
[17] and [18]. This generalization of the imbedding method can be used in implementation of
the limit expressions (1.1). This method is based on the integration of the first-order ordinary
differential equations associated to the matrix powers F' = F!(z) = adj(DT + 1)), H' = H'(2) =
F'(2)2! and the scalar g' =g'(z) = (det(DT +21))" .

Theorem 2.1. Consider arbitrary matrices D € C1*P T € CP*1, U € CI*™ and V €
C"*%, an integer | > 1 and an arbitrary integer e. For the matriz B(z) = DT + 21, let the
matrices F(z), H(z) and the scalar g(z) are defined by

F=F(z)=adj(B(2))=(Bi;), H=H(z)=F(2)z,

(2.1)
g=g(z)=det(B(z)).
Then F'(z), H'(z) and g'(z) satisfy the following ordinary differential equations:
AFY) g P THE) - B
=I[F ,
dz g
d l
Efz) — lgl—l TY(F), (22)
dHY) , ,¢"—1zF'B"! — 2" ' Tx(F)
=z F*.
dz g

Assume that the matrices F'(z), H'(z) and the scalar g'(z) satisfy the following initial
conditions:
F'(z0)=(adj(DT + 20I))", H'(z0)=F'(20)2), ¢'(20)=(det(DT + zI))’
where
20 >0, |zo|§m€ig|zi|, S={zi|z>0 is the eigenvalue of — DT'}. (2.3)
Zi

In this case is
L=1lim V(DT + 2I)"'U
z—0
Fi(zg) 41 f prf T =BT
=V lim G .
g'(z0) +1 [ g*=' Tr(F)dz

Z0




