ALGORITHMS FOR IMPLEMENTATION OF GENERAL LIMIT REPRESENTATIONS OF GENERALIZED INVERSES*

Predarg S. Stanimirović

(University of Niš, Faculty of Science, Department of Mathematics, Čirila i Metodija 2, 18000 Niš, Yugoslavia)

Abstract

In this paper we investigate three various algorithms for computation of generalized inverses which are contained in the limit expressions $\lim_{z\to 0} V \left(DT + z\mathbf{I}\right)^{-l} U$ and $\lim_{z\to 0} V \left(DT + z\mathbf{I}\right)^{-l} z^e$. These algorithms are extensions of the algorithms developed by various authors in [2], [3-4], [7-9], [16-18].

Key words: Generalized inverses, Limit representation, Finite algorithm, Imbedding method.

1. Introduction and Preliminaries

The set of all $m \times n$ complex matrices of rank r is denoted by $\mathbb{C}_r^{m \times n}$. By I we denote an appropriate identity matrix. Also, $\operatorname{Tr}(A)$ denotes the trace of a square matrix A. By $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are denoted the range and the null space of A, respectively. Finally, $\operatorname{adj}(A)$ and $\operatorname{det}(A)$ denote the adjoint of the matrix A and the determinant of A, respectively.

For any matrix $A \in \mathbb{C}^{m \times n}$ consider the following equations in X:

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$

and if m = n, also

(5)
$$AX = XA$$
, (1^k) $A^{k+1}X = A^k$.

For a sequence S of $\{1,2,3,4,5\}$ the set of matrices obeying the equations represented in S is denoted by $A\{S\}$. A matrix from $A\{S\}$ is called an S-inverse of A and denoted by $A^{(S)}$. If X satisfies (1) and (2), it is said to be a reflexive g-inverse of A, whereas $X = A^{\dagger}$ is said to be the Moore-Penrose inverse of A if it satisfies (1)–(4). The group inverse $A^{\#}$ is the unique $\{1,2,5\}$ inverse of A, and exists if and only if $\operatorname{ind}(A) = \min\{k : \operatorname{rank}(A^{k+1}) = \operatorname{rank}(A^k)\} = 1$. A matrix $G = A^D$ is said to be the Drazin inverse of A if (1^k) (for some positive integer k), (2) and (5) are satisfied.

Let there be given positive definite matrices M and N of the order m and n, respectively. For any $m \times n$ matrix A, the weighted Moore-Penrose inverse of A is the unique solution $X = A_{M,N}^{\dagger}$ of the matrix equations (1), (2) and the following equations in X:

$$(3M)$$
 $(MAX)^* = MAX$ $(4N)$ $(NXA)^* = NXA.$

In this paper we investigate three methods for implementation of the following limit expressions, related to a given matrix A of the order $m \times n$:

$$L = \lim_{z \to 0} V(DT + z\mathbf{I})^{-l}U, \qquad L_1 = \lim_{z \to 0} V(DT + z\mathbf{I})^{-l}z^e,$$
(1.1)

where D, T, U and V are appropriate variable complex matrices of the order $q \times p, p \times q, q \times m$ and $n \times q$, respectively, $l \ge 1$ and e is an arbitrary integer. These limit expressions contain all so far known limit representations of generalized inverses investigated in [1], [5], [6], [8], [10-15], [18-20]. Moreover, in the case $D = U, V = \mathbf{I}$ we obtain the limit expression investigated in [16].

^{*} Received August 20, 1998; Final revised September 6, 2000.

562 P.S. Stanimirović

The paper is organized as follows. In the second section we establish and investigate a general imbedding method for computing the generalized inverses included in the limit expressions (1.1). This method deals with a system of first-order ordinary differential equations associated to the matrices $F^l(z) = (\operatorname{adj}(DT + z\mathbf{I}))^l$, $H^l(z) = F^l(z)z^l$ and the scalar $g^l(z) = (\det(DT + z\mathbf{I}))^l$. In certain particular cases we obtain the results originated in [9], [17] and [18].

In the third section is investigated implementation of the limit representations (1.1) by means of several sets of orthogonal vectors. This implementation is an extension of the method introduced in [9] for implementation of the known limit representation of the Moore-Penrose inverse.

In the last section, using a generalization of the method from [8] and [16], we introduce a more condensed form of the Leverrier-Faddeev finite algorithm for computation of various generalized inverses. Introduced algorithm contains known generalizations of the Leverrier-Faddeev algorithm, available in [2], [4], [7-9] and [16-17]. A part of this method which concerns the limit L in the single case $V = \mathbf{I}$, D = T reduces to the known generalization of the Leverrier-Faddeev algorithm, introduced in [16].

2. A Generalized Imbedding Method

In this section we develop a generalization of the imbedding methods, introduced in [9], [17] and [18]. This generalization of the imbedding method can be used in implementation of the limit expressions (1.1). This method is based on the integration of the first-order ordinary differential equations associated to the matrix powers $F^l = F^l(z) = (\operatorname{adj}(DT + z\mathbf{I}))^l$, $H^l = H^l(z) = F^l(z)z^l$ and the scalar $g^l = g^l(z) = (\det(DT + z\mathbf{I}))^l$.

Theorem 2.1. Consider arbitrary matrices $D \in \mathbb{C}^{q \times p}$, $T \in \mathbb{C}^{p \times q}$, $U \in \mathbb{C}^{q \times m}$ and $V \in \mathbb{C}^{n \times q}$, an integer $l \geq 1$ and an arbitrary integer e. For the matrix $B(z) = DT + z\mathbf{I}$, let the matrices F(z), H(z) and the scalar g(z) are defined by

$$F = F(z) = \operatorname{adj}(B(z)) = (B_{ij}), \quad H = H(z) = F(z)z,$$

 $g = g(z) = \det(B(z)).$ (2.1)

Then $F^l(z)$, $H^l(z)$ and $g^l(z)$ satisfy the following ordinary differential equations:

$$\frac{d(F^{l})}{dz} = lF^{l} \frac{g^{l-1} \operatorname{Tr}(F) - B^{l-1} F^{l}}{g^{l}},
\frac{d(g^{l})}{dz} = lg^{l-1} \operatorname{Tr}(F),
\frac{d(H^{l})}{dz} = z^{l-1} \frac{g^{l} - lzF^{l}B^{l-1} - lzg^{l-1} \operatorname{Tr}(F)}{g^{l}} F^{l}.$$
(2.2)

Assume that the matrices $F^l(z)$, $H^l(z)$ and the scalar $g^l(z)$ satisfy the following initial conditions:

$$F^l(z_0) = (\operatorname{adj}(DT + z_0\mathbf{I}))^l, \quad H^l(z_0) = F^l(z_0)z_0^l, \quad g^l(z_0) = (\det(DT + z_0\mathbf{I}))^l$$

where

$$|z_0| > 0, |z_0| \le \min_{z_i \in S} |z_i|, \quad S = \{z_i | z_i > 0 \text{ is the eigenvalue of } -DT\}.$$
 (2.3)

In this case is

$$L = \lim_{z \to 0} V (DT + z\mathbf{I})^{-l} U$$

$$= V \lim_{z \to 0} \frac{F^{l}(z_{0}) + l \int_{z_{0}}^{z} F^{l} \frac{g^{l-1} \operatorname{Tr}(F) - B^{l-1} F^{l}}{g^{l}} dz}{g^{l}(z_{0}) + l \int_{z_{0}}^{z} g^{l-1} \operatorname{Tr}(F) dz} U.$$