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Abstract

We present two iterative algorithms, so called SCP and SA respectively, for solving
quasicomplementarity problem (QCP). Algorithm SCP is to approximate QCP by a se-
quence of ordinary complementarity problems (CP). SA is a Schwarz algorithm which can

be implemented parallelly. We prove the algorithms above are monotonically convergent.
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1. Introduction

Consider the following QCP: find u € R™ such that
min{Au — f, uw— Bu} =0, (1)

where A, B: R™ — R" are operators, f € R"™. The quasivariational inequality which is equiva-
lent to (1) sounds: to find u € R™ such that v > Bu and

(Au, v—u)>(f, v—u), Yv> Bu. (2)

If Bu = c¢ € R" for any v € R" then QCP(1) reduces into CP. (1) appears in mathematical
programming (see, for example, [2] and the references therein), also comes from the discretiza-
tion of QCP in mathematical physics and control theory (see [1]). For various generalization,
see [3] and the references therein.

We assume in this paper that A is a strictly T-monotonic operator, that is:
(Au— Av, (u—v)T) >0, Vu,v€R",

where the equality holds only if (v —v)" =0, vT = max{v,0}. The examples in [6] show that
strictly T-monotonic operator is widely applicable.

We propose two algorithms for solving (1). The first (SCP) is to solve iteratively a sequence
of CP, which produces a sequence of approximate solutions convergent monotonically to a
solution of (1). The second (SA) is a Schwarz algorithm, which is parallel algorithm and

produce super(sub)solution sequence of (1), convergent monotornically to a solution of (1).
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Schwarz algorithms have been developed rapidly (for example, see [4], [6] and the references

therein), But Algorithm SA is the first Schwarz algorithm for quasivariational inequality.

2. Sequential CP Algorithm

Algorithm SCP
19, Take u® € R*, k:=0;
20, Find u**! € R" such that

min {Auk+1 — f, uFtt— Buk} = 0; (3)

3% k:=k+1,goto2°
At first we study an operator F related to (3) and defined as follows: for any x € R™ define
y = Fz as the solution of the following C'P:

min{Ay — f, y — Bz} =0. (4)

It has a unique solution if operator A is continuous, strictly T-monotonic and coercive in some
sense (see, for example, [5]). Then F is well-defined.
We call an operator B order-preserved if v < w implies Bv < Bw.

Lemma 1. Assume B is continuous, order-preserved and there exists b € R™ such that
Bv<b, VveR". (5)

Assume A is continuous, strictly T-monotoinic and

(Av, v—10)
ol

Then the range of F, denoted by R(F), is bounded. That is, there exist p,q € R™ such that

= 400 (|| v||]—= 00). (6)

p<Fx<gq, VxeR".

Proof. Since (6) implies the coerciveness condition of A in [5], (4) has a unique solution for
any € R"™ and F' is well-defined. Hence we have

min{AFz — f, Fx—Bz}=0, VzeR"
Then for any « € R™ we have
(AFz, v—Fz) > (f, v—Fz), VYv> Bu.
Letting v = b in it we obtain
(AFz,Fx —b) < (f,Fz—b), VreR"

which combining with (6) yields that F' is bounded.
Remark 1. If there exists a constant « such that

(Av — Aw,v —w) > a||lv—w||?, Vv,w € R"



