MONOTONIC ITERATIVE ALGORITHMS FOR A QUASICOMPLEMENTARITY PROBLEM*

Shu-zi Zhou Wu-ping Zan Jin-ping Zeng (Department of Applied Mathematics, Hunan University, Changsha 410082, China)

Abstract

We present two iterative algorithms, so called SCP and SA respectively, for solving quasicomplementarity problem (QCP). Algorithm SCP is to approximate QCP by a sequence of ordinary complementarity problems (CP). SA is a Schwarz algorithm which can be implemented parallelly. We prove the algorithms above are monotonically convergent.

Key words: Quasicomplementarity problem, Iterative algorithm, Monotonic convergence, Schwarz algorithm.

1. Introduction

Consider the following QCP: find $u \in \mathbb{R}^n$ such that

$$\min\{Au - f, \quad u - Bu\} = 0,\tag{1}$$

where $A, B: \mathbb{R}^n \to \mathbb{R}^n$ are operators, $f \in \mathbb{R}^n$. The quasivariational inequality which is equivalent to (1) sounds: to find $u \in \mathbb{R}^n$ such that $u \geq Bu$ and

$$(Au, v-u) \ge (f, v-u), \quad \forall v \ge Bu. \tag{2}$$

If $Bu \equiv c \in \mathbb{R}^n$ for any $v \in \mathbb{R}^n$ then QCP(1) reduces into CP. (1) appears in mathematical programming (see, for example, [2] and the references therein), also comes from the discretization of QCP in mathematical physics and control theory (see [1]). For various generalization, see [3] and the references therein.

We assume in this paper that A is a strictly T-monotonic operator, that is:

$$(Au - Av, (u - v)^+) \ge 0, \quad \forall u, v \in \mathbb{R}^n,$$

where the equality holds only if $(u-v)^+=0$, $v^+=\max\{v,0\}$. The examples in [6] show that strictly T-monotonic operator is widely applicable.

We propose two algorithms for solving (1). The first (SCP) is to solve iteratively a sequence of CP, which produces a sequence of approximate solutions convergent monotonically to a solution of (1). The second (SA) is a Schwarz algorithm, which is parallel algorithm and produce super(sub)solution sequence of (1), convergent monotonically to a solution of (1).

 $^{^{\}ast}$ Received September 8, 1998; Final revised November 1, 1999.

Schwarz algorithms have been developed rapidly (for example, see [4], [6] and the references therein), But Algorithm SA is the first Schwarz algorithm for quasivariational inequality.

2. Sequential CP Algorithm

Algorithm SCP

- 1°. Take $u^0 \in R^n$, k := 0;
- 2^0 . Find $u^{k+1} \in \mathbb{R}^n$ such that

$$\min\left\{Au^{k+1} - f, \ u^{k+1} - Bu^k\right\} = 0; \tag{3}$$

 3^0 . k := k + 1, go to 2^0 .

At first we study an operator F related to (3) and defined as follows: for any $x \in \mathbb{R}^n$ define y = Fx as the solution of the following $\mathbb{C}P$:

$$\min\{Ay - f, \ y - Bx\} = 0. \tag{4}$$

It has a unique solution if operator A is continuous, strictly T-monotonic and coercive in some sense (see, for example, [5]). Then F is well-defined.

We call an operator B order-preserved if $v \leq w$ implies $Bv \leq Bw$.

Lemma 1. Assume B is continuous, order-preserved and there exists $b \in \mathbb{R}^n$ such that

$$Bv \le b, \quad \forall v \in \mathbb{R}^n.$$
 (5)

Assume A is continuous, strictly T-monotoinic and

$$\frac{(Av, v-b)}{\parallel v \parallel} \to +\infty \quad (\parallel v \parallel \to \infty). \tag{6}$$

Then the range of F, denoted by R(F), is bounded. That is, there exist $p,q \in \mathbb{R}^n$ such that

$$p \le Fx \le q, \quad \forall x \in \mathbb{R}^n.$$

Proof. Since (6) implies the coerciveness condition of A in [5], (4) has a unique solution for any $x \in \mathbb{R}^n$ and F is well-defined. Hence we have

$$\min\{AFx - f, \quad Fx - Bx\} = 0, \quad \forall x \in \mathbb{R}^n.$$

Then for any $x \in \mathbb{R}^n$ we have

$$(AFx, v - Fx) \ge (f, v - Fx), \forall v \ge Bx.$$

Letting v = b in it we obtain

$$(AFx, Fx - b) < (f, Fx - b), \quad \forall x \in \mathbb{R}^n$$

which combining with (6) yields that F is bounded.

Remark 1. If there exists a constant α such that

$$(Av - Aw, v - w) > \alpha \parallel v - w \parallel^2, \quad \forall v, w \in \mathbb{R}^n$$