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Abstract

Based upon a new mixed variational formulation for the three-field Stokes equations
and linearized Non-Newtonian flow, an h — p finite element method is presented with or
without a stabilization. As to the variational formulation without stabilization, optimal
error bounds in h as well as in p are obtained. As with stabilization, optimal error bounds
are obtained which is optimal in A and one order deterioration in p for the pressure, that
is consistent with numerical results in [9, 12] and therefore solved the problem therein.
Moreover, we proposed a stabilized formulation which is optimal in both A and p.
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1. Introduction

Motivated by some advantages of h — p FEM over the classic FEM uncovered by recent
computation works(see-[19]), Schwab and Siiri [11] have considered the mixed h—p finite element
method for Non-Newtonian flow based upon a three-field Stokes formulation emanating from
linearization of some different models of Non-Newtonian flow, in which, stress, velocity and
pressure are coupled. Theoretical analysis and tailored numerical experiments show that the
mixed h — p finite element method exhibits an exponential convergence on geometrical graded
meshes. However, optimal error bounds for both h and p are not available, and extra freedoms
are needed for the stress if a continuous approximation is preferable, the latter is momentous
when the equation has to be coupled with other equations in a big system or the problem is
set up in high-dimensions. Though a modified EVSS method (Elastic Viscous Split Stress) [7]
makes the drop of redundant freedoms possible, it gives rise to a non-symmetric system with
an extra unknow which increases the complexity of computations.

Combined with the well-known stabilized FEM(see [8] for a survey), Schétzau, Gerdes and
Schwab proposed a stabilized h—p FEM in [13] and [9]. However, error bounds obtained therein
are not consistent with numerical tests [9, 12]. It seems that such discrepancy is merely due to
techniques employed.

The purpose of this paper is developing a unifying method, a stabilized h—p FEM to resolve
the above problem. Our method relies on a new variational formulation. The main advantage
of this method is that the choice of finite element spaces for the stress is independent of those
for the velocity and pressure. The ingredient in our analysis is the scaled weak B-B inequality
proved in the h — p setting and the divide and conquer principle.

Outline of the paper follows. In the next section, a new variational formulation is proposed
and a finite element space pair is presented and analyzed. As a direct consequence of this
variational formulation, an iterative algorithm is deduced in Section §3, convergence rate is also
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estimated. In the last section, a stabilized h — p FEM is formulated and the error bound is
derived which is consistent with numerical results.
Throughout this paper, we assume that the constant C' is independent of i and p.

2. New Variational Formulation for Upper Convected Maxwell Model

In the following, we only consider the upper convected Maxwell model, the simplest one in
Non-Newtonian fluids, which can be described by the following equations:

)
—dive+Vp=Ff, divu=0, 0'—1—)\6—07; = 2v€u, (2.1)

where Eu is the strain rate tensor defined by the symmetric part of Vu as u = 1 (Vu+(Vu)?),
do /ot is the upper convected derivative defined by

0o Oo
E:E.}.(u.V)g—(Vu-o'—}—O'-(VU)T). (2'2)

A is the relaxation time of the material. Let A = 0, (2.1) reduces to

—dive+Vp=f, divu=0, o =2fu, (2.3)

which is just the three-field Stokes problem.

We introduce some notations.

Let © be a bounded convex polygonal domain in R? with the Lipschitz boundary I'. R?
is equipped with Cartesian coordinates z;, i = 1,2. Denote by (-,-) the £2(Q2) scalar product
of functions, vectors or tensors. Defined the following Sobolev spaces: T' = [£? (Q)]gym =

1
{T = (Tij) | Tij = Tji, Tij € £2(Q), Z,] = 1,2} with the norm ||T||T = (fQ |T|2)2, X =
[Hy(M]*, M = L3(Q) = {q € L2(Q) | [yq=0}. X, M are equipped with the norm [|v|| x =
(J, 1€012)7, llallm = ([, lg]?)* respectively. It is easy to see that || - || x is an equivalent norm
over X.

With these notations, we state a new variational formulation as follows.
Find (o,u,p) € T x X x M such that

%(a,f) —a(r,fu) =0 VreT, (2.4)
a(o,Ev) + 2(1 — a)v(Eu,Ev) — (p,dive) = (f,v) Vv e X, (2.5)

(divu,q) =0 Vge M. (2.6)

Remark 2.1. The above formulation is similar to the Oldroyd version of the Stokes problem
[2] with v = 1. However, a finite element discretization of the latter yields a non-symmetric
algebraic system while the previous one gives rise to a symmetric system with a variant of «
that accounts for the flexibility in applications.

To facilitate the analysis, we define two operators as follows

Au(,): Tx X xT x X - R,

Ao, usT,v) = %(0', ) — a(r,&u) + alo, Ev) + 2(1 — a)v(Eu, Ev) (2.7)

and
B(,): TxX xM —R,

B(T,'U,q) = _(p7 diVU). (28)
Problem H: find (o,u,p) € T x X x M such that
Ao(o,u;T,0) + B(r,v;p) = (f,v)  V(r,v) € (T, X), (2.9)



