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Abstract

Symplecticness, stability, and asymptotic properties of Runge-Kutta, partitioned Runge—
Kutta, and Runge-Kutta—Nystrom methods applied to the simple Hamiltonian system
p = —vq,q = kp are studied. Some new results in connection with P—stability are pre-
sented. The main part is focused on backward error analysis. The numerical solution
produced by a symplectic method with an appropriate stepsize is the exact solution of a
perturbed Hamiltonian system at discrete points. This system is studied in detail and new
results are derived. Numerical examples are presented.
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1. Introduction

In the area of symplectic integration of Hamiltonian systems of the form
= —JvH (u),

where
=[] =[],

H e € (M) is the Hamiltonian, M C R®"™ open is the phase space,
OH oH 1"
backward error analysis plays an important role. The idea is to interprete the numerical solution
produced by a symplectic one—step method as the exact solution of a perturbed Hamiltonian
system. In general, this is only formally possible; the perturbed Hamiltonian system is given
as a power series which is usually divergent (Feng [4], Hairer [9], Tang [15], Yoshida [17]; cf.
Hairer, Ngrsett, Wanner [10], Sanz—Serna, Calvo [14]). If the Hamiltonian system is linear, i.e.,
the Hamiltonian is a quadratic form, then the perturbed Hamiltonian system can be expressed
by the logarithm of a matrix. Conditions exists which guarantee the existence of a logarithm
of the relevant matrix (Wang [16]).
Often the Hamiltonian system is linear and separable as follows:

U

where a nonsingular matriz W € R™*"™ exists with

vii=|

, K, N € R"*"™ symmetric,

WLKW-T = diag(k1, ..., k), WINW = diag(vi, ..., vn).
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The Hamiltonian splits into the sum of two quadratic forms, H(p,q) = %pTKp + %qTNq. The
most occuring case is that K is positive definite, then a matrix W exists with WKW 1 = I.
This is evident from the fact that with K also K ' is symmetric and positive definite, and
therefore by theorems about the principal axis transformation there exists a nonsingular matrix
W such that WTK~'W is equal to I and WTNW is a diagonal matrix. The situation K and
N positive definite arise for example in connection with small oscillation approximations for
nonlinear mechanical systems near stable equilibrium points (cf. Abraham, Marsden [1], Arnold
2]).

For the numerical integration of (1) Runge-Kutta (RK) methods, partitioned Runge-Kutta
(PRK) methods, and Runge-Kutta—Nystrom (RKN) methods can be used (cf. Hairer, Ngrsett,
Wanner [10], Sanz—Serna, Calvo [14]; see also [7]), which are summarized as Runge-Kutta
type (RKT) methods. After a symplectic transformation of coordinates (1) decomposes into n
Hamiltonian systems of the form

pl_|0 —v D
MR

with H(p,q) = %ﬁp2 + %qu. Methods that are symplectic for all systems of type (1) are called
ls—symplectic. Stability properties are studied in detail in [6] and [8]. In this paper a backward
error analysis of Is—symplectic RKT methods is presented. First, in section 2 the main results
concerning ls—symplecticness and stability are summarized and some new results are given. In
section 3 the backward error analysis is developed. If kv > 0 in (2), then the solution to
given initial conditions describes an ellipse in the phase plane. The numerical solution of an
Is—symplectic RKT method with an admissible step size is the exact solution of a perturbed
Hamiltonian system and lies also on an ellipse; the perturbed system is formulated, the shape
of the ellipse is studied. Further, the conservation of the Hamiltonian is investigated, a lower
and an upper bound for the error are given. In section 4 numerical examples are presented. All
the results can easily be generalized to the integration of (1).

Note that after a further symplectic transformation of coordinates system (2) reduces in the
case kv > 0 to p = —wq, ¢ = wp with w > 0. For only studying the stability of RKT methods
this symplification reduces the amount of work, but the results are also valid for k # v. For
backward error analysis on the other side there is no real benefit from k = v. So, there is no
need for this further symplification here. Especially, some early investigations are not restricted
to that (Feng, Qin [5]).

2. Basic results

The symplecticness and stability of RKT methods for linear separable Hamiltonian systems
of type (1) are studied in detail in [6] and [8]. In this section a short summary and some
new results are given which are close related to the theory of P-stability (van der Houwen,
Sommeijer [11], [12]).

2.1 Is—symplecticness and stability

A one-step method is called ls—symplectic if it is symplectic for all systems of type (1). The
basis for the investigation of Is—symplecticness of RKT methods is that such a method applied
to (1) with initial condition w(0) = ug reduces to

Umt1 = G(hK,hN)u,,, m=0,1,2,...,
where for square matrices X,Y of the same size

I _

G(X.Y) = { 1 (Y X) YF12(XY)-| ‘
[XF21(YX) F22(XY)J

The I5;,1,j = 1,2, are rational functions of the form %, where ¥11, ... ,Ws, ¥ are polynomials
with real coefficients that are determined by the parameters of the method. For explicit methods



