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Abstract

Multigrid methods are developed and analyzed for the generalized stationary Stokes
equations which are discretized by various mixed finite element methods. In this paper, the
multigrid algorithm, the criterion for prolongation operators and the convergence analysis
are all established in an abstract and element—independent fashion. It is proven that the
multigrid algorithm converges optimally if the prolongation operator satisfies the criterion.
To utilize the abstract result, more than ten well-known mixed finite elements for the
Stokes problems are discussed in detail and examples of prolongation operators are con-
structed explicitly. For nonconforming elements, it is shown that the usual local averaging
technique for constructing prolongation operators can be replaced by a computationally
cheaper alternative, random choice technique. Moreover, since the algorithm and analysis
allows using of nonnested meshes, the abstract result also applies to low order mixed finite
elements, which are usually stable only for some special mesh structures.
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1. Introduction
In this paper, we consider the following generalized stationary Stokes equations:
—Ag+Vp:Zj, in Q,
divg =G, inQQ, (1.1)
u = 0, on 0.

where (2 is a bounded convex domain in R?, u represents the velocity of fluid, p its pressure; F

and G are external force and source terms. Note that the source must satisfy the compactability
condition of having zero mean value, and (1.1) reduces to the stationary Stokes equations when
G =0.

The mixed variational formulation of the generalized Stokes equations with arbitrary given
force f and source g is to find [u,p] € (H(2))? x L3(2) such that

(Vu, Vo) = (p,dive) = (f,v), Vv € (Hy(Q))?,

(1.2)
(g, divu) = (g,9), Vg€ L),
or equivalently, find [u, p] € (HE(Q))? x LE(9) such that
L(Qupl[v,a)) = (£,0) = (9:0), ¥ [v,4) € (H3()* x L5(), (1.3.1)
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where (-,-) = (-,-)q denotes the inner product in L%*(Q) or (L*(Q2))?, LZ(Q) is the space of
L?(Q2)-integrable functions which have zero mean value (cf. [7] for space notations) and

L([u,pl,[v,q]) = (Vu,Vv) — (p,divv) — (¢, div u). (1.3.2)

~ ~

Note that when f = F and g = G, (1.2) or (1.3) is the variational formulation of (1.1).

It is well known A(ch. [13] and [14]) that the problem (1.2) is uniquely solvable if f €
(H~1(Q))?, g € L3(RY). Moreover, if f € (L*(2))%, g € L§(Q) N H'(Q), then the solution
[, 7] € (H2(Q) N HY () x (H'() N L3(®)) and there holds

lollze@) +ITllme-1@) < CllFllae-2@) + lgllme-r@)], €=1,2. (1.4)

To describe mixed finite element methods for the generalized Stokes equations, we begin
with the triangulations of the domain Q. Let 7,(k > 0) be a quasi—uniform triangular or
rectangular partition of 2 with mesh size hy, that is, there exists some constant ag > 0, 6y > 0
such that

hkg > Qo Pk, Ok > 90, VK € 774, k>0, (AO)

where hg, 0 and pg denote, respectively, the diameter of K, the smallest angle of K and
the the diameter of the largest ball contained in K. For simplicity, we also assume that =
UkeT, K. Finally, in order to get optimal order algorithm we assume that the mesh sizes of
two consecutive meshes are related as follows (cf. subsection 5.4 for the other restrictions):

oy thy < by < hg, k>0, (1.5)

for some constant «; > 1. Obviously, for a nested mesh family, namely, 75 is obtained by
connecting the midpoints of the three edges of all triangles of 7;_1 or by linking the midpoints
of two opposite sides of all rectangles of T—1, (1.5) holds with ay = 2.

Let Xy C (L*(Q))?, My C L%(Q) be two finite element approximate spaces of (Hg(f2))?

and L(Q) associated with 7;. The mixed finite element method for (1.2) at level k is to find
[ug,pr] € X x My such that

(Vur, Vo)r = (pr,div o)y = (f,0)r, Vv eXy,

. (1.6)
(qadlvgk)k :(gaq)ka quMkJ
or equivalently, find [ug,pi] € X x M}, such that
»Ck([gkapk]7[£7q]) = (f::li)k _(gaq)ka v [E;q] G)Sk XMIC; (17)
where
k=Y (5K, (1.8)
KeTk

It is well-known that X and M} must satisfy the following Babuska—Brezzi condition in
order to guarantee the existence and stability of the mixed finite element approximations:

(g, div vy)|
sup

> vllgllLz@), Y q€ Mg, (1.10)
v EXg ||2k||k



