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Abstract

This paper is devoted to the development of a new stabilized finite element method for
solving the advection—diffusion equations having the form —k Au+aeoyu+ou = f with
a zero Dirichlet boundary condition. We show that this methodology is coercive and has
a uniformly optimal convergence result for all mesh—Peclet number.
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1. Introduction

Consider the advection—diffusion equation

u = 0 on 0N (1.1)

{—mAu+gozu+au = f in Q
in a bounded polygonal domain Q C IR? with the boundary 9, where 0 < & < 1 is the
diffusion parameter, o > 0 is a given positive constant, a(z) is a given vector field representing
the flow with yea = 0in Q, and f € L*(Q) is a given source function. The term o u is usually
obtained by the time discretization of the nonstationary advection—diffusion equation arising
from mathematical and engineering problems, so the item o takes it form as 1/At with At < 1
being the time step. Generally speaking, o is comparatively large, and when At or « tends to
zero, a boundary layer region may be present near the boundary.

It is now well known that the standard Galerkin method solving (1.1) often causes a bad
numerical solution when the balance among the three parameters o, x and a is losing. The goal
of stabilized finite element methods established in recent decade, e.g. see [5] [8] [10], etc., is
to seek for some good approximating solutions of (1.1) on which the effects emanating from
the disturbance among o,k and g can be cut down as much as possible. In [4] [5] [7] [8] [11],
some stablized finite element methods with an additional mesh—dependent perturbation bilinear
term were proposed, therein a good approximating result was obtained. [5] studied a stabilized
method based on local bubble functions for (1.1) with ¢ = 0 or @ = 0, which deduced an
optimal error estimation including higher order elements, independent of ¢ and « for the case
with @ = 0, and independent of mesh—Peclet number for the case with ¢ = 0.

In [1], a bubble—enriching method for advection—diffusion problem without the zeroth order
term o u is analyzed in details. However, the bubble—enriching method is not fit for the ad-
vection dominated case. For this reason, some special local bubble functions are needed, e.g.
see [2] [10], e.t., which are usually very difficult to construct. As for the fact that the bubble-
enriching method often deduces a stabilized method associated with problem (1.1), it may be
also referred to [11] for a heuristic observation.
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Now we consider a general model (1.1). Firstly by defining a stabilizing parameter and by
adding a suitable mesh—dependent bilinear form, we design a finite element approximation for
(1.1). Next, the coerciveness of the new formulation is shown, and finally the optimal error
estimates for all mesh—Peclet number are obtained, including the L?-norm, and the higher order
elements for triangle and quadrilateral partitions of the domain. If introducing a mesh—Peclet
number, it can be seen that our results may result in those of [5] [8].

The rest of this paper is outlined as follows. In section 2, the stabilized finite element
formulation for (1.1) is described and the coerciveness of this method is investigated. The
section 3 is devoted to a general error analysis. In the last section, every case of (1.1) is
discussed, according to o, x and a. Sharp error estimates are obtained.

In what follows, for simplicity we shall use C' (or C;,i = 1,2,---) to stand for different
constant at different occurence, and they are all independent of o, k, a and the mesh size h.

2. Problem Fzormulation

For convenience, we rewrite (1.1)

—-kAut+aeyut+ou = f in Q (2.1)
u = 0 on 0N ’
The standard Galerkin variational problem is to find u € H}(2) such that
B(u,v) = (f,v)0 Vv e Hi(Q) (2.2)
where
B(u,v) = (cu,v)o + (@® Y u,v)0 + (kY u, V v)o (2.3)
The discrete version of problem (2.2) consists of finding u, € Uy C Hg(Q2) such that
B(up,v) = (f,v)o Yve U (2.4)
where
Up={ve Hy(Q)NCQ)|vk € Rp(K),K € &} (2.5)

with R, (K) = P (K) or Qn(K) corresponding to the partition being triangle or quadrilat-
eral, and m > 1, Py, Q,, are the usual finite element subspaces depicted in [3]. &, is the
regular partition of the domain 2, which is supposed to be a polygonal bounded region as
usual. Also, C'(Q) is the space of continuous functions in Q, and H{ () is the Hilbert space
of functions, taking their values as zero along the boundary 0f2, which, together with their
first—order derivatives, are square—integrable.

For each K € &, define

hic
a = ; 2.6
TK, aoch? + k+ hk [a]k (2.6)
with a > 0 to be determined later. Here hi is the element parameter for K € &, and
[a]x = sup |a(z)[, (2.7)

zeEK

with |a(z)l, = (32— 0 |ai($)|p)% for 1 < p < oo and |a(2)|ee = max;=12 |a;(z)| for p = oo
being a norm in the Euclidean two dimensional space IR?. Now, a stabilizing bilinear form is
introduced as follows.

T(u,v) = —« Z TKa(Cu+aeJu—kKAu,0v—aeVv)ox (2.8)
Kegy,



