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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications.
The heat transport equation is different from the traditional heat transport equation since
a second order derivative of temperature with respect to time and a third-order mixed
derivative of temperature with respect to space and time are introduced. In this study,
we develop a hybrid finite element-finite difference (FE-FD) scheme with two levels in
time for the three dimensional heat transport equation in a cylindrical thin film with sub-
microscale thickness. It is shown that the scheme is unconditionally stable. The scheme is
then employed to obtain the temperature rise in a sub-microscale cylindrical gold film. The
method can be applied to obtain the temperature rise in any thin films with sub-microscale
thickness, where the geometry in the planar direction is arbitrary.
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1. Introduction

Heat transport through thin films is of vital importance in microtechnology applications
[9, 10]. For instance, thin films of metals, of dielectrics such as SiO9, or Si semiconductors
are important components of microelectronic devices. The reduction of the device size to mi-
croscale has the advantage of enhancing the switching speed of the device. On the other hand,
size reduction increases the rate of heat generation which leads to a high thermal load on the
microdevice. Heat transfer at the microscale is also important for the processing of materials
with a pulsed-laser [11, 12]. Examples in metal processing are laser micro-machining, laser
patterning, laser processing of diamond films from carbon ion implanted copper substrates, and
laser surface hardening. Hence, studying the thermal behavior of thin films is essential for pre-
dicting the performance of a microelectronic device or for obtaining the desired microstructure
[10]. The heat transport equations used to describe the thermal behavior of microstructures
are expressed as [14]:
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where ¢ = (q1, g2, ¢3) is heat flux, T is temperature, k is conductivity, C} is specific heat, p is
density, () is a heat source, 7, and 7 are positive constants, which are the time lags of the heat
flux and temperature gradient, respectively. In the classical theory of diffusion, the heat flux
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vector (¢) and the temperature gradient (V1') across a material volume are assumed to occur
at the same instant of time. They satisfy the Fourier’s law of heat conduction:

ﬂmayazat) = —kVT(.’IJ,y,Z,t). (3)

However, if the scale in one direction is at the sub-microscale, i.e., the order of 0.1uym (1 um
=10"% m) then the heat flux and temperature gradient in this direction will occur at different
times, as shown in Eq. (2) [14]. The significance of the heat transfer equations (1) and (2) as
opposed to the classical heat transfer equations has been discussed in [14] (see pp. 127-128).
In Figure 5.9 (see p. 128 in [14]) the author shows that for 77 = 90 ps and 7, = 8.5 ps the
predicted change in ﬁix over time gave an excellent fit to the data and was significantly
different from that predicted by the classical heat transfer equations.
Using Taylor series expansion, the first-order approximation of Eq. (2) gives [14]

§+Tq%:—k VT-FTT%[VT] . (4)
Tzou et al. [13, 14] considered Eqgs. (1) and (4) in one dimension, and eliminated the heat flux
¢ to obtain a dimensionless heat transport equation as follows:
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They studied the lagging behavior by solving the above heat transport equation (5) in a semi-
infinite interval, [0, +00). The solution was obtained by using the Laplace transform method
and the Riemann-sum approximation for the inversion [3]. Recently, we have developed a
two level finite difference scheme of the Crank-Nicholson type by introducing an intermediate
function for solving Eq. (5) in a finite interval [4]. The finite difference scheme has then been
generalized to a rectangular thin film case where the thickness is at sub-microscale [5].

In this article, we consider the domain to be a cylindrical thin film with the radius in the
zy-directions and the thickness to be of order of 1 mm and 0.1 wm, respectively, as shown
in Figure 1. Since the finite element method is suitable for the cylindrical geometry, in this
study we develop a two-level hybrid finite element-finite difference scheme for solving the three-
dimensional heat transport equation in the sub-microscale thin film, by employing the finite
element method to the xy-directions and the finite difference method to the z-direction.We
show that the scheme is unconditionally stable. The method is then applied to obtain the
temperature rise and the change of temperature on the surface of a cylindrical gold film, where
the radius in the xy-directions is assumed to 1.0 mm and the thickness is 0.05 pm.

2. Hybrid Finite Element-Finite Difference

Since we consider a thin film with thickness of the order 0.1 um and the planar direction to
be of the order of a millimeter, we may assume that there is thermal lagging in the thickness
direction and no lagging in the planar direction. In essence, it presumes an orthotropic lagging
response at short times, with 7, and 77 being nonzero in the thickness direction and zero in
the planar direction perpendicular to the thickness direction. As such, the components of the
heat flux in the x and y directions satisfy the traditional Fourier’s law, while the component in
the z direction satisfies Eq. (4). Hence, we obtain
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