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Abstract

This is the second part of the paper for the mathematical study of nonconforming
rotated Qi1 element (NRQ: hereafter) on arbitrary quadrilateral meshes. Some Poincaré
Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A
discrete trace inequality is also proved.
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1. Mesh Subdivision

Let 75, be a partition of Q by convex quadrilaterals K with the mesh size hx and h :=

maxgeT;, hi. We assume that 7 is shape regular in the sense of Ciarlet-Raviart [3, p. 247].
We define a mesh condition which actually quantifies the deviation of a quadrilateral away from
a parallelogram [10].
Definition 1.1. (1+4a)-Section Condition (0 < a < 1). The distance dx between the midpoints
of two diagonals of K € Ty, is of (’)(h?“) uniformly for all elements K as h — 0. In case of
a = 0, Ty is the trapezoid mesh, and in case of a = 1, T, satisfies the Bi-Section Condition
[13].

We define by Py, the space of polynomials of degrees no more than k, and by Qj, the space
of degrees no more than k in each variable.

Let K = [—1,1]? be the reference square, the coordinates of the its four vertices are denoted
by {(&,n:)}i, which is labelled from the lower-left to the upper-left in a counterclockwise
manner, the same rule applies to K, whose vertices are denoted by {(z;,v;)}7_,. There exists
a bilinear mapping F' such that F(K’) = K. Let F = (2K X&), with
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y =7 ) (L GO+ mimys = bo + bi& + bon + b1agn.
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To each scalar function ¢ defined on K, we associate it a function v on K such that v(x) =
v(F(&)) = 0(2).

Before closing this section, we fix some notations. For any integer k, H*(Q) denotes the
standard Sobolev spaces [5]. f,udz is defined as the integral average of v on Q. Denote
by Vi, the NRQ, finite element space, and by V,*, V¥ the corresponding finite element spaces
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with continuous edge integral mean or with continuous mid-point on each edge (see [12,9] for a
definition). For any v € V},, we define a piecewise norm as

ot = (3 190l2.) "
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Throughout this paper, the generic constant C' is assumed to be independent of the mesh
size h.

2. Poincare Inequality

In this section, we present some versions of the Poincaré inequality for the nonconforming
finite element spaces V" and VP [12]. We adopt all the notations appeared in [9].

In case the element K is a rectangular parallelepiped, the Poincaré inequality has been
proved in [6]. A strengthened version of this inequality is presented in [7]. But both of them
are suitable only for the homogeneous space V; . Moreover, as to the strengthened Poincaré
Inequality, the quasi-uniformity of the mesh subdivision is assumed. In this section, we will ex-
tend Poincaré inequalities appeared in [6, 7] to both homogeneous and nonhomogeneous spaces
over arbitrary quadrilateral meshes without the quasi-uniformity assumption, which allows for
the adaptive mesh subdivision.

Meanwhile, some generalized Poincaré Inequalities have been proved by Stummel in [14]
by virtue of the compact argument. However, when it applies to the quadrilateral rotated Q;
element, we have to assume the quasi-uniformity of meshes and the closedness of the given finite
element space via the generalized patch test. But as we have seen in [9] that the finite element
space V;/ does not pass the generalized patch test for arbitrary quadrilaterals. So, instead of
the compact argument, we adopt Teman’s approach [15] which avoids the generalized patch
test.

There is also another approach appeared in [8, Chp.3] to prove the Poincaré inequality for
nonconforming elements, which starts from the conforming “relative” of the relevant noncon-
forming element, then exploits the high order distance between the conforming ”relative” and
the nonconforming element to prove the desired inequality. This approach is very flexible which
allows for very "rough” mesh. Recently the same approach is employed by Brenner [2] to prove
the generalized Poincaré-Friedrichs inequality for piecewise H' functions.

Theorem 2.1. Poincare Inequality

lvllo < Clvln Vv € Vou. (2.1)

llvflo < C(|U|h + |][ Uda:|) Yo € V. (2.2)
Q

[ollo < C(joln + [lvflor) Vo€ V3. (2.3)

)

1/2
lollo < Cloli+C( > leleP) T voe vy (2.4
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Proof. We prove the above four inequalities one by one.
For any v € [H'(Q)]? and v € Vp 3, an integration by parts gives

/Qdivt/wda:: 3 (—/Kz/:Vvda:-%/BKm/)-nds).

KeTh



