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Abstract

An iterative algorithm is proposed and analyzed based on a hybridized mixed finite ele-
ment method for numerically solving two-phase generalized Stefan interface problems with
strongly discontinuous solutions, conormal derivatives, and coefficients. This algorithm
iteratively solves small problems for each single phase with good accuracy and exchange
information at the interface to advance the iteration until convergence, following the idea
of Schwarz Alternating Methods. Error estimates are derived to show that this algorithm
always converges provided that relaxation parameters are suitably chosen. Numeric exper-
iments with matching and non-matching grids at the interface from different phases are
performed to show the accuracy of the method for capturing discontinuities in the solutions
and coefficients. In contrast to standard numerical methods, the accuracy of our method
does not seem to deteriorate as the coefficient discontinuity increases.
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1. Introduction

Interface problems occur in many physical applications. Below is a description of alloy
solidification [10, 11, 12, 9] that shows the importance and characteristics of interface problems.

In alloy solidification problems, the melting temperature is not known in advance, which is
different from classical Stefan problems such as ice-melting in water. The melting temperature
depends on the composition of the alloy. Typically, an alloy is considered to comprise a pure
substance containing a small concentration of one or more secondary substances, called impu-
rities. The solidification of an alloy calls for a simultaneous study of the processes of heat flow
and the diffusion of impurities. We now describe the mathematical model of a simple two-phase
alloy solidification process in one, two or three space dimensions, with = denoting the space
coordinate vector [10, 12, 11, 9]. Let €4 (¢) denote the solid (alloy) region and Q2(t) the liquid
(impurity) region, which are separated by the interface denoted by I'(t), where ¢ represents
time. Note the solid and liquid regions and the interface change with time ¢t. Let uy, ¢y, Ky,
and D; be the temperature, concentration of impurity, heat conductivity, and mass diffusion
coefficient, respectively, in the solid region Q4 (¢), and us, c2, K2, and D» be the corresponding
quantities in the liquid region Q2(t); see Figure 1.1. Then the partial differential equations

modeling the process can be expressed as:
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0 0
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together with appropriate boundary and initial conditions, where v, denotes the speed at which
the interface is moving along its normal direction v, g1, g2 and p;, p2 are sources or sinks and
specific heat in Qq, s, respectively, L is the latent heat. Equations (3) and (4) are the so-called
generalized Stefan conditions.

Figure 1.1: Two-phase alloy solidification with a moving interface I'(t) between the solid re-
gion Q4 (¢) and the liquid region .(t). Concentration of impurity is discontinuous across the
interface.

Another example is multiphase immiscible flow of incompressible fluids with different den-
sities and viscosities and surface tension. The governing equations in each fluid are the Navier-
Stokes equations. The effect of surface tension is to balance the jump of the normal stress
along the fluid interface, which gives rise to a free boundary condition for the discontinuity
of the normal stress across the interface of the fluids. In the case of inviscid flows, the above
jump condition is reduced to a discontinuity in pressure across the interface proportional to the
curvature.

Interface problems such as the two mentioned above are difficult to solve by using conven-
tional numerical methods since the the coefficients in different phases can be strongly discon-
tinuous across the interface. Standard numerical methods such as finite element and mixed
finite element algorithms are mainly designed to deal with problems with continuous or mod-
erately discontinuous coefficients. For problems with strongly discontinuous coefficients, their
accuracy can become arbitrarily inaccurate; see [31, 24] for some explanations and numerical
examples. In particular, Nielsen [24] gave an example using standard finite element method
whose accuracy deteriorates from 0.0044 to 0.0290 (or the error increased 559 percent) when
the coefficient jump increases from 2 to 16. Vavasis [31] gave examples on which standard finite
element methods fail on current computers. Note that modern preconditioners based on do-
main decomposition and multigrid cannot expect to improve the accuracy, although they may
dramatically improve the efficiency of the solution process.

On the other hand, discontinuities in the solution or its normal derivatives can also present
another difficulty; see [19, 20, 18, 32]. Note that the standard finite element theory [7] requires
the solution be continuous (in H'(Q2)) and the mixed finite element theory [4] requires the
normal derivative of the solution be continuous. Here we face a class of problems whose solution
and its normal derivative can be discontinuous in the physical domain. Thus standard finite



