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Abstract

The extended system of nondegenerate simple bifurcation point of the Navier-Stokes
equations is constructed in this paper, due to its derivative has a block lower triangular
form, we design a Newton-like method, using the extended system and splitting iterative
technique to compute transcritical nondegenerate simple bifurcation point, we not only
reduces computational complexity, but also obtain quadratic convergence of algorithm.

Mathematics subject classification: 35A40, 65M60, 656N30, 65J15, 47H15.
Key words: Nondegenerate simple bifurcation point, Splitting iterative method, The ex-
tended system.

0. Introduction

Bifurcation problem of the Navier-Stokes equations has been studied rather extensively
in the last years, see Li/Mei/Zhang(1986)[5], and M.Golubitsky/D.G.Schaefer(1988)[6], Allgo-
wer/E.Bohmer(1990) [7]. in this paper we discussed numerical approximate method of non-
degenerate simple bifurcation point of the Navier-Stokes equations, the content of the paper
is arranged as follows, first we introduce the Navier-Stokes equations and its operator form in
the section 1, and discuss property of nondegenerate simple bifurcation points. in the section 2
we will construct a extended system as a tool for computing nondegenerate simple bifurcation
points. in the section 3 we give a Newton-like method for computing transcritical nondegenerate
simple bifurcation point, splitting iterative technique is used to compute transcritical nonde-
generate simple bifurcation point of the Navier-Stokes equations. in the section 4 we will make
numerical experiment.

1. Navier-Stokes Equation and its Nondegenerate Simple Bifurcation
Point

We consider the stationary Navier-Stokes equations which has homogeneous boundary con-
ditions

—vAu+ (u-V)u+ Vp = f, z €
divu = 0, z €W (1.1)
U|aQ =0.
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Q2 is a bounded and smooth domain of R™, m = 2,3, moreover f € [L?(Q)]™, v is the coefficient
of kinematic viscosity.

It is well know that the uniqueness of solution of the stationary Navier-Stokes equations has
only been proved under the assumptions that Reynolds number is sufficiently small, or f is suf-
ficiently small, otherwise its solution may be not uniquel' 3!, for this reason it is very important
to discuss efficient numerical algorithm of singular solution for Navier-Stokes equations.

Define function space

V ={ue [H{(D)]™; divu =0}
H = {ue [L2(Q)])™ divu=0,u-n|sq =0}

n denotes the outward normal vector on 9. the scalar product and norm of L?(Q)™ are
denoted by (-,-), | - | on H, Define the following scalar product on V'

((u,v)) = (Vu,Vv), Yu,v€eV

|| - || denotes its corresponding norm, variational formulation of the Navier-Stokers equations
may be stated as follows [}2]

Aag(u,v) + a(u,u,v) = (f,v) =0, YveV, (1.2)
where A = v = Re~! bilinear from ao(-,-) and trilinear form a(:,-,-) are defined by
ap(u,v) = (Vu,Vv), Yu,v €V,
a(u,v,w) = [(u- Vv wdz, Vu,v,weV.
introduce bilinear from B(-,-) : V xV — V'
< B(u,v),w >= a(u,v,w), VYu,v,w €V,

where < -,- > denotes duality pairing on V' x V. let T'(u) = A7'[B(u,u) — f], where A is
stokes operator , then operator form of the Navier-Stokes equations can be writ as follows'[2]

G(u,A) :== du+ T'(u) (1.3)

it is Frechet differentiable and D, G(u,A) = Al + T'(u), it is clear that Yu € V,T'(u) is a
compact operator form V into V 12 and G : V x R — V is a nonlinear Fredholm operator
with 0-index,

In the sequel the subindex 0 indicate the evaluations of function at the point (ug, Ag). with
some calculation, we obtain:

DyGo = Aol +T'(ug) = Mol + A7 [B(ug, ) + B(- uo)], (1.4)
DGy = NI 4+ T (ug) = Mol + A7 [B*(uo,-) + B*(-,uo)], (1.5)
DyuGo = T"(ug) = A™'[B(-,-) + B(:,-)], (1.6)

Dy\Go =up; DunGo =1; Dx\Go =0, (1.7)

Setting ¢, ¢ are eigenfunction of D, Gy and D, G§ corresponding to 0 eigenvalue respectively,
namely

Ker(D,Go) = Span{¢}, ||¢]| =1 (1.8)
Ker(D,Gp) = Span{v}, ||| =1 (1.9)
(6.6)) =1 (1.10)

Fredholm theory shows that
Range(D,Go) = {u € V, ((u,¢)) = 0} (1.11)



