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Abstract

In this article we consider the fully discrete two-level finite element Galerkin method for
the two-dimensional nonstationary incompressible Navier-Stokes equations. This method
consists in dealing with the fully discrete nonlinear Navier-Stokes problem on a coarse
mesh with width H and the fully discrete linear generalized Stokes problem on a fine mesh
with width b << H. Our results show that if we choose H = O(h'/?) this method is as
the same stability and convergence as the fully discrete standard finite element Galerkin
method which needs dealing with the fully discrete nonlinear Navier-Stokes problem on a
fine mesh with width h. However, our method is cheaper than the standard fully discrete
finite element Galerkin method.
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1. Introduction

Two-level finite element Galerkin method is an efficient numerical method for solving non-
linear partial differential equations, e.g., see Xu [25, 26] for steady semi-linear elliptic equations,
Layton [15], Ervin, Layton and Maubach [5], Layton and Lenferink [16] and Layton and To-
biska [17] for the steady Navier-Stokes equations. This method is closely related to the nonlinear
Galerkin method [1,11, 18-20, 23] and recently developed in [7,22] to solve the nonstationary
Navier-Stokes equations. However,it is well known [1, 11, 18-20, 23] that a defect of the nonlin-
ear Galerkin methods is needed to approximate solution uy as the large eddy component y and
the small eddy component z" and solve the unknown components ¥y and 2" simultaneously,
that is to solve a coupled nonlinear and linear equations and increase computing price.

In the case of the nonlinear evolution problem, the basic idea of the two-level method is to
find an approximation ug by solving a nonlinear problem on a coarse grid with grid size H
and find an approximation u” by solving a linearized problem about the known approximation
ug on a fine grid with grid size h. The semi-discretization in space of the 3D time-dependent
Navier-Stokes problem by the two-level method is considered in [7]. Furthermore, the fully
discretization in space-time of the 2D and 3D time-dependent Navier-Stokes problem by the
two-level method is analyzed in [22], where the local error estimates, stability and convergence
are proved, but the global error estimates do not provided. In fact, this scheme is of the global
first-order accurate with respect to the time step size 7.

In the recent work [10] we considered this two-level method used in [22] for solving the
nonstationary, incompressible Navier-Stokes equations. If the equations is discreted by the
standard finite element Galerkin method, there will be a large system of nonlinear algebraic
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equations to be solved. To overcome this difficult, we applied a two-level finite element Galerkin
method for solving the nonstationary Navier-Stokes equations in the framework of mixed finite
elements. This will yield a small system of nonlinear algebraic equations and a large system of
linear algebraic to be solved, i.e., this method can save a large amount of computational work.
For the standard finite element Galerkin method, the discrete velocity up(-,t) and pressure
pu(-,t) are determined in finite element spaces denoted respectively by X; and M) which
satisfy the so-called inf-sup condition ( see [3, 8] ). Our two-level finite element Galerkin
method consists in

e Finding (um,pn) € (Xm, Mp) by solving the nonlinear Navier-Stokes problem on the
coarse mesh with width H;

e Finding (u”,p") € (X, M}p) by solving the linear generalized Stokes problem based on
(ug,pm) on the fine mesh with width h << H.

In recent work [10], our main results are the following results:
[u"(t) — un(®)|| g < K(t)(h+ H?) Vt>0, (1.1)
1" (8) = pa(Dllz2 < o ()" k()(h + H?) V>0, (1.2)

where o(t) = min{1,t} and (up,pp) is the standard FE Galerkin approximation based on
(X, M}p,) which satisfies the following error estimates:

lu(t) = un(®) | < w(E)R,VE >0, (13)
() = pr(®)ll1> < o))~/ 2k()h, ¥t > 0. (L4)

These estimates indicate that the two-level finite element Galerkin method gives the same order
of approximation as the standard finite element Galerkin method if we choose H = O(h!/?).
However, in our method, the nonlinearity is only treated on the coarse grid and only the linear
problem needs to be solved on the fine grid.

This paper continues our analysis of the two-level finite element Galerkin method for the
Navier-Stokes equations. Here we study the time discretizations of the two-level finite element
Galerkin method and the standard finite element Galerkin method in which time is discreted by
the Euler implicit difference scheme. By using several discrete analogs of the Gronwall lemma,
we are able to show that if we choose H = O(h'/?), the two-level finite element Galerkin
approximate solution (uf (t),ph (¢)) is as stable and convergence as what should be verified by
the standard finite element Galerkin approximate solution (u2*(t), p4(t)), namely the numerical
solutions (u& (t),p (t)) and (us (t), p5 () satisfy

llul (8)l]an s lluy Ol < e(llol| e + iggllf(t)lle), (1.5)
luf (t) — uw(t)||gr < &(t)(h+ H? + At),Vt >0, (1.6)

( Ot IPA(5) = p(s)l[72ds)'/? < w(t)(h + H? + At),Vt > 0, (1.7)
lufy (8) = w®)llmrr < w(8)(h + At), ¥t > 0, (1.8)

( Ot Ip5 (s) = p(s)[|72ds)"/* < k(t)(h + At), Vi > 0, (1.9)

where (1.6)-(1.9) hold if At¢ being small. Here x(t) denotes a generic constant depending on
the data (2, v, uo, fxo,t) and is continuous with respect to time,

foo = s {50 + 15O i =
t>0



