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Abstract

In this paper, we define a new nonconforming quadrilateral finite element based on the
nonconforming rotated Q1 element by enforcing a constraint on each element, which has
only three degrees of freedom. We investigate the consistency, approximation, superclose
property, discrete Green’s function and superconvergence of this element. Moreover, we
propose a new postprocessing technique and apply it to this element. It is proved that the
postprocessed discrete solution is superconvergent under a mild assumption on the mesh.
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1. Introduction

There are some lower order quadrilateral finite elements, e.g., the conforming isoparametric
Q1 element, the nonconforming rotated Q1 element and the nonconforming Wilson element.
All these finite elements need at least four degrees of freedom. Recently, Park and Sheen have
proposed a nonconforming quadrilateral P1 element, which has only three degrees of freedom
[10]. One of the key ideas of the P1 element is that a linear function on a quadrilateral satisfies
a constraint that the summation of values at the midpoints of one pair of opposite edges equals
to the summation of values at the midpoints of the other pair of opposite edges.

In this paper, we define a new nonconforming quadrilateral finite element based on the
nonconforming rotated Q1 element (NR Q1 hereafter)[9] by imposing a similar constraint on
each element, the resulting element has only three degrees of freedom, too. We call this element
constrained nonconforming rotated Q1 element(CNR Q1 for short). The CNR Q1 element
and the P1 element are equivalent on a rectangle, however, they are different on a general
quadrilateral. We investigate some properties of this new element. A new postprocess technique
is proposed to obtain a superconvergent discrete postprocessed solution.

The outline of the paper is as follows. In Section 2 and Section 3, we define the CNR Q1

element and apply it to the second order elliptic problem. In section 4, we define regular deriva-
tive Green function of nonconforming finite elements and investigate its properties. Section 5
is devoted to the analysis of the supperclose property and superconvergence of the CNR Q1

element. In Section 6 , we discuss the postprocessing technique which admits a superconvergent
discrete postprocessed solution. This paper ends with numerical examples in Section 7.

We end this section with some notations. Let Ω be a convex polygon with the boundary
∂Ω. We use the standard notation and definition for the Sobolev spaces Hs(Ω) for s ≥ 0 [1],
the associated inner product is denoted by (·, ·)s , and the norm by ‖ · ‖s with the seminorm
| · |s. H

0(Ω) = L2(Ω), in this case, the norm and inner product are denoted by ‖ · ‖0 and (·, ·)
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respectively. As usual, Hs
0 (Ω) is the subspace of Hs(Ω) with vanishing trace on ∂Ω. Define

H−1(Ω) the dual space of H1
0 (Ω) equipped with the norm ‖ · ‖−1, and < ·, · > denotes the

dual pair between H1
0 (Ω) and H−1(Ω). We shall also use the Sobolev spaces W s,p for s ≥ 0

and p ≥ 1, equipped with the norm ‖ · ‖s,p,Ω with the seminorm | · |s,p,Ω. If p = 2 we have
W s,p = Hs(Ω).

We use the standard gradient operator:

∇r =

(
∂r/∂x
∂r/∂y

)
, ∇̂r =

(
∂r/∂ξ
∂r/∂η

)
.

Throughout this paper, C denotes a generic constant, which is not necessarily the same at
different places, but independent of the mesh size h.

2. Constrained Nonconforming Rotated Q1 Element

In this section, we introduce some notations and define a new nonconforming finite element
method, namely, CNR Q1 element.

2.1 Quadrilateral Mesh

Let Jh = {Ki, i = 1, · · · , Ne} be a quasi-uniform quadrilateral partition of Ω with diam(Ki) ≤
h. Let NV and NE denote the numbers of nodes and elements of the partition, respectively,
NV

i and NS
B denote the numbers of interior nodes and boundary edges, respectively.

We shall frequently use the following assumption on the partition Jh.

Assumption 2.1. The distance dK between the midpoints of two diagonals is of order O(h1+α)
with 1 ≥ α > 0 when h tends to zero. If α = 1, we obtain the usual Bi-section condition [11].
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Quadrilateral Element K and Reference Element K̂

For a given element K ∈ Jh, its four nodes are denoted by pi(xi, yi), i = 1, · · · , 4 in the
counterclockwise order. Let K̂ = [−1, 1]2 denote the reference element with nodes p̂i(ξi, ηi), i =
1, · · · , 4. Define the bilinear transformation FK : K̂ → K by

x =

4∑

i=1

xiNi(ξ, η), y =

4∑

i=1

yiNi(ξ, η), (ξ, η) ∈ K̂,


