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Abstract

In this paper, we consider multigrid methods for solving symmetric nonnegative definite
matrix equations. We present some interesting features of the multigrid method and prove
that the method is convergent in L2 space and the convergent solution is unique for such
nonnegative definite system and given initial guess.
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1. Introduction

Multigrid (MG) methods have been successfully applied to many scientific computing prob-
lems. The main advantage of this method is its asymptotically optimal convergence, i.e., the
computational work required to achieve a fixed accuracy is proportional to the number of dis-
crete unknowns. The convergence analysis of multigrid methods has been studied extensively
by many papers (see [3, 6, 9, 11, 12, 16, 17, 18]). Recent effort for indefinite systems has been
made in [5, 8, 21].

In this paper, we consider convergence of the multigrid method for linear systems with sym-
metric nonnegative definite matrices. Classical iterative algorithms, such as Jacobi iteration and
Gauss-Seidel iteration, for solving such nonnegative definite systems have been well studied in
many literatures (e.g., see [1]). Some semiconvergent iterative methods were discussed in [7,13].
An incomplete factorization and an extrapolation technique were presented in [15] and [19],
respectively. The convergence analysis of these classical iterations for the semidefinite problems
can be obtained due to simple structures of algorithms. It has been proved theoretically and
numerically that multigrid methods are usually more efficient than those classical iterations.
Some numerical investigation of multigrid methods has been presented for solving certain sin-
gular systems arising from eigenproblems, second-order elliptic PDEs with Neumann boundary
conditions, queuing networks, and image reconstruction ([3,5,10] ). Theoretical analysis for the
indefinite systems is less explored. The major difficulties lie on the fact that there exist infinite
many solutions for a consistent singular system and the structure of multigrid methods is more
complicated than those of classical iterations. The concept of classical convergence should be
modified. In fact, for a singular system, one only expects to find an approximation to one of
solutions. In this case, the main point for an iterative algorithm is as follows: when the iteration
stops, the difference between the iterative solution and some exact solution is less than a given
tolerance. In this paper, we shall prove that multigrid methods for symmetric nonnegative
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definite systems are convergent in a classical sense ( L2-norm ). Some important features will
be discussed. We present a convergence rate in a quotient space (in an energy norm) and an
asymptotic convergence rate in the classical sense (L2-norm). Thus, the multigrid method,
similar to some classical iterations, is a semiconvergent method and can be applied directly to
symmetric nonnegative systems of equations.

The paper is organized as follows. We present a multigrid algorithm and some new features
for the singular case in section 2. The general convergence theory of multigrid methods for
semidefinite problems are discussed in section 3.

2. Multigrid Algorithm

Let V m, m = 1, 2, ..., M , be nested nm dimensional Hilbert spaces with inner product (·, ·)
and ‖vm‖L2

= (vm, vm)1/2 . Let Am ≥ 0 be an nm × nm symmetric nonnegative definite
matrix on V m with null space N(Am). Denote the quotient space V m/N(Am) by Hm. Then
Am > 0 on Hm and Hm = span{vm

1 , vm
2 , ..., vm

lm
}, where vm

l , 1 ≤ l ≤ lm, are the eigenvectors
corresponding to nonzero eigenvalues and lm is the rank of the matrix Am.Let P m

H : V m → Hm

and P m
0 : V m → N(Am) be the orthogonal projection operators. For any v ∈ V m, we have

v = vH + v0 , where vH = P m
H v and v0 = P m

0 v.
Consider the matrix problem

A1U1 = R1, (2.1)

and assume that A1 is irreducible and symmetric nonnegative definite and the right-hand side
R1 is given properly such that there exists at least a solution for the above problem (2.1), i.e.,
R1 is in the quotient space H1.

Let Im+1
m : V m → V m+1 define a restriction and Im

m+1 : V m+1 → V m an interpolation,
1 ≤ m ≤ M − 1. Let Gm: V m × V m → V m be smoothing operators and F M represents
an exact solver, in which case F M (UM , RM ) = UM,∗, where AMUM,∗ = RM . The following
defines a standard µ-cycle multigrid algorithm ( called a V -cycle if µ = 1 and a W -cycle if
µ = 2 ) for solving

AmUm = Rm, 1 ≤ m ≤M. (2.2)

Standard MG Algorithm
(i) If m = M , then UM ← F M (UM , RM ).
(ii) If m < M , then
(1) Um ← Gm(Um, Rm) (pre-smoothing step);
(2) perform µ iterations of Standard MG Algorithm on level m + 1 (with fixed value of U m)

for the following correction problem, starting from zero initial value :

Am+1Um+1 = Im+1
m (Rm −AmUm), Um+1 ∈ V m+1 ; (2.3)

(3) Um ← Um + Im
m+1U

m+1 (correction);
(4) Um ← Gm(Um, Rm) (post-smoothing step).
Here we assume that the interpolation Im

m+1 is full rank and

Im+1
m = (Im

m+1)
T and Am+1 = Im+1

m AmIm
m+1. (2.4)

It has been noted that the standard MG algorithm is given in a recurrence form. The matrix
Am+1 is irreducible and symmetric nonnegative definite if Am possesses these properties. More
important features are given in the following lemma.
Lemma 2.1. Assume that Am is irreducible and symmetric nonnegative definite, and the
interpolation operator Im

m+1 is full rank. Then, we have

Im
m+1 : N(Am+1)→ N(Am),

and
Im+1
m : Hm → Hm+1.


