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Abstract

A T-mesh is basically a rectangular grid that allows T-junctions. Recently, Deng etal

introduced splines over T-meshes, which are generalizations of T-splines invented by Seder-
berg etal, and proposed a dimension formula based on the B-net method. In this paper,
we derive an equivalent dimension formula in a different form with the smoothing cofactor
method.
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1. Introduction

T-meshes are formed by a set of horizontal line segments and a set of vertical line segments,
where T-junctions are allowed. See Figure 1 for examples.

Traditional tensor-product B-spline functions, which are a basic tool in the design of free-
form surfaces, are defined over special T-meshes, where no T-junctions appear. B-spline surfaces
have the drawback that arises from the mathematical properties of the tensor-product B-spline
basis functions. Two global knot vectors which are shared by all basis functions, do not allow
local modification of the domain partition. Thus, if we want to construct a surface which
is flat in the most part of the domain, but sharp in a small region, we have to use more
control points not only in the sharp region, but also in the regions propagating from the sharp
region along horizontal and vertical directions to maintain the tensor-product mesh structure.
The superfluous control points are a big burden to modelling systems. In [5], Sederberg etal
explained the troubles made by these superfluous control points in details.

To overcome this limitation, we need the local refinement of B-spline surfaces, i.e. to insert
a single control point without propagating an entire row or column of control points. In [4]
hierarchical B-splines were introduced, and two concepts were defined: local refinement using
an efficient representation and multi-resolution editing. In principle, Hierarchical B-splines are
the accumulation of tensor-product surfaces with different resolutions and domains. Weller and
Hagen [8] discussed tensor-product splines with knot segments. In fact, they defined a spline
space over a more general T-mesh, where crossing, T-junctional, and L-junctional vertices are
allowed. But its dimensions are estimated and its basis functions are given over the mesh
induced by some semi-regular basis functions.

In 2003, Sederberg etal [5] invented T-spline. It is a point-based spline, i.e., for every
vertex, a blending function of the spline space is defined. Each of the blending functions
comes from some tensor-product spline space. Though this type of splines supports many
valuable operations within a consistent framework, but some of them, say, local refinement, are
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not simple. In the T-spline theory, the local refinement is dependent on the structure of the
mesh, and its complexity is uncertain. Whether T-spline blending functions are always linearly
independent is an open question [6]. The reason leading to these problems is that the spline
over every cell of the mesh is not a polynomial, but a piecewise polynomial.

In [2], Deng etal formulated the concept of T-meshes, and studied the spline space over
T-meshes. They forced the spline on every cell to be a tensor-product polynomial and achieve
the specified smoothness across common edges, and derived a dimension formula when the
smoothness is less than half of the degree of polynomials with a method based on B-nets.

In the theory of multivariate spline, smoothing cofactor method [7] is another dominant
approach to calculate the dimension of some specified spline space. In this paper, we derive a
dimension formula equivalent to Deng’s formula with the smoothing cofactor method. The proof
is longer than the B-net version, but it is revelatory. Based on some results in this paper, we
have implemented a quasi-real-time algorithm, which will be explored in another forthcoming
paper, to calculate the dimension of a general spline space over T-meshes. And we expect that
we can generalize Deng’s formula based on the smoothing cofactor method in the future.

The paper is organized as follows. Section 2 presents a brief review of the spline spaces over
T-meshes. In Section 3, by introducing the concepts of vertex cofactor and in-line, we derive a
dimension formula for the spline space S(m, n, α, β, T ) when m > 2α + 1 and n > 2β + 1 with
the smoothing cofactor method, and prove that it is equivalent to Deng’s formula. In the final
section, we conclude the paper with some further research problems.

2. Spline Spaces over T-meshes

In this section, we first present some concepts related with T-meshes, and then review spline
function spaces over T-meshes.

2.1 T-mesh

a b

Figure 1: Examples of T-mesh

A T-mesh is basically a rectangular grid that allows T-junctions [5]. The longest possible
horizontal or vertical line segments to make up a T-mesh are called grid lines. We assume that
the endpoints of each grid line in the T-mesh must be on two other grid lines, and each cell

or facet (the area without any line segment inside it) in the grid must be a rectangle. Figure
1 illustrates two examples of T-meshes, while in Figure 2 two examples of non-T-meshes are
shown.

A grid point in a T-mesh is also called a vertex of the T-mesh. If a vertex is on the
boundary grid line of a T-mesh, then is called a boundary vertex. Otherwise, it is called an
interior vertex. For example, bi, i = 1, . . . , 10 in Figure 3 are boundary vertices, and all the


