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Abstract

In this paper the effect of integral memory terms in the behavior of diffusion phenomena
is studied. The energy functional associated with different models is analyzed and stability
inequalities are established. Approximation methods for the computation of the solution
of the integro-differential equations are constructed. Numerical results are included.
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1. Heat Equation and Jeffrey’s Kernel

Let us consider the problem of heat conduction in a one dimensional homogeneous and
isotropic bar (0, a) in which the heat pulses are transmitted by waves at finite but perhaps high
speed. Representing by q(x, t) the heat flux and assuming that holds the Fourier law

q = −k1

∂u

∂x
, (1)

where k1 is the effective thermal conductivity, it can be shown that the temperature u at (x, t)
satisfies the classical heat equation

∂u

∂t
= c

∂2u

∂x2
, (2)

where c represents the thermal diffusivity. It is well known that this equation has the unphysical
property that if a sudden change in the temperature is made at some point of the bar, it will
be felt instantly everywhere. We say that diffusion gives rise to infinite speeds of propagation.

The problem that unphysical infinite speeds of propagation are generated by diffusion was
first treated in [3]. In order to avoid this serious drawback it has been proposed in [3] to define
the flux by an integral over the history of the temperature gradient, that is,

q(x, t) = −
k

τ

∫ t

−∞

e−
t−s

τ
∂u

∂x
(x, s) ds , (3)

where k represents the thermal conductivity. We note that the Fourier law holds as the limit
of Cattaneo’s law (3) when τ → 0. This definition of q(x, t) corresponds to a first order
approximation, in τ , of the modified Fourier law

q(x, t + τ) = −k1

∂u

∂x
(x, t).

In fact, considering the first order approximation

q(x, t + τ) ≃ q(x, t) + τ
∂q

∂t
(x, t),
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and integrating the first order differential equation

1

τ
q(x, t) +

∂q

∂t
(x, t) = −

k1

τ

∂u

∂x
(x, t),

we obtain (3).
Considering (3), it can be shown that the temperature u at (x, t) satisfies Cattaneo’s equation

∂u

∂t
(x, t) =

k

γτ

∫ t

−∞

e−
t−s

τ
∂2u

∂x2
(x, s) ds , (4)

where γ is the heat capacity. This equation was considered by different authors. For instance,
Vernotte, in [15], considered Cattaneo’s equation as the simplest that gives rise to finite speed
of propagation. In fact, equation (4) is equivalent to the hyperbolic telegraph equation

∂2u

∂t2
+

1

τ

∂u

∂t
=

k

γτ

∂2u

∂t2
, (5)

which transmits waves with a finite speed

√

k

γτ
and presents a very small attenuation as a con-

sequence of relaxation. The telegraph equation is the simplest mathematical model combining
wave propagation and diffusion.

In Figure 1 we show the long time behavior of heat equation and Cattaneo’s equation. The
plots have been obtained from the discretization with standard numerical methods in a very
fine mesh.

However, as pointed out in the engineering literature (see for example [9]), there are no real
conductors which exhibit the wave propagation behavior of Cattaneo’s model.

In [9] a corrected version of flux (3) is presented. A kernel of Jeffrey’s type was then
considered by replacing in (3) the exponential kernel by

Q(s) = k1δ(s) +
k2

τ
e−

s
τ , (6)

where δ(s) is a Dirac delta function, and k1 and k2 represent , respectively, the effective thermal
conductivity and the elastic conductivity. In this case the Fourier law leads to a flux q defined
by

q(x, t) = −k1

∂u

∂x
(x, t) −

k2

τ

∫ t

−∞

e−
t−s

τ
∂u

∂x
(x, s) ds. (7)

It can be shown that the temperature, in this case, satisfies Jeffrey’s integro-differential equation

∂u

∂t
(x, t) =

k1

γ

∂2u

∂x2
(x, t) +

k2

γτ

∫ t

−∞

e−
t−s

τ
∂2u

∂x2
(x, s) ds . (8)

In recent years several authors gave attention to the introduction of Volterra integrals to
model heat propagation (see [2], [5], [13]).

For k2 = 0 we have the classical diffusion equation while for k1 = 0 we obtain Cattaneo’s
equation. In Figure 2 we present the behavior of the three models at different times. We remark
that Jeffrey’s model allows the selection of parameters k1 and k2 such that mathematical models
in agreement with experimental behavior of different materials can be obtained.

Cattaneo’s equation and Jeffrey’s equations predict different quantitative and qualitative
behavior for the propagation of heat. This fact can be explained because while Cattaneo’s
equation is of hyperbolic type, Jeffrey’s equation has a parabolic behavior. In the first case, if
the initial condition presents discontinuities they will be propagated with constant speed. By
the contrary, as Jeffrey’s equation is of parabolic type, any discontinuity of the initial condition
will be smoothed by diffusion associated with the effective thermal conductivity.


