# EXPANSIONS OF STEP-TRANSITION OPERATORS OF MULTI-STEP METHODS AND ORDER BARRIERS FOR DAHLQUIST PAIRS *1) 

Quan-dong Feng<br>(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China;<br>Graduate School of the Chinese Academy of Sciences, Beijing 100080, China)<br>Yi-fa Tang<br>(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)


#### Abstract

Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to $O\left(\tau^{s+5}\right)$ with order $s=1$ and rewrite the expansion of the steptransition operator for $s=2$ (obtained by the second author in a former paper). We prove that in the conjugate relation $G_{3}^{\lambda \tau} \circ G_{1}^{\tau}=G_{2}^{\tau} \circ G_{3}^{\lambda \tau}$ with $G_{1}$ being an LMSM, (1) the order of $G_{2}$ can not be higher than that of $G_{1} ;(2)$ if $G_{3}$ is also an LMSM and $G_{2}$ is a symplectic $B$-series, then the orders of $G_{1}, G_{2}$ and $G_{3}$ must be 2,2 and 1 respectively.


Mathematics subject classification: 65L06
Key words: Linear Multi-Step Method; Step-Transition Operator; B-series; Dahlquist (Conjugate) pair; Symplecticity

## 1. Introduction

For an ordinarily differential equation (ODE)

$$
\begin{equation*}
\frac{d}{d t} Z=f(Z), \quad Z \in \mathbb{R}^{p} \tag{1}
\end{equation*}
$$

any compatible linear $m$-step difference scheme (DS)

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k} Z_{k}=\tau \sum_{k=0}^{m} \beta_{k} f\left(Z_{k}\right) \quad\left(\sum_{k=0}^{m} \beta_{k} \neq 0\right) \tag{2}
\end{equation*}
$$

can be characterized by a step-transition operator (STO) (also called underlying one-step method) $G$ (also denoted by $\left.G^{\tau}\right): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ satisfying

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k} G^{k}=\tau \sum_{k=0}^{m} \beta_{k} f \circ G^{k} \tag{3}
\end{equation*}
$$

where $G^{k}$ stands for $k$-time composition of $G$ : $G \circ G \cdots \circ G$ (refer to [2,3,5,6,7]). This operator $G^{\tau}$ can be represented as a power series in $\tau$ with first term equal to the identity $I$. More

[^0]precisely, one can expand ${ }^{[9]}$ the STO $G^{\tau}(Z)$ of any linear multi-step method (LMSM) ${ }^{2}$ of form (2) with order $s \geq 2$ up to $O\left(\tau^{s+5}\right)$ :
\[

$$
\begin{equation*}
G^{\tau}(Z)=\sum_{i=0}^{+\infty} \frac{\tau^{i}}{i!} Z^{[i]}+\tau^{s+1} A(Z)+\tau^{s+2} B(Z)+\tau^{s+3} C(Z)+\tau^{s+4} D(Z)+O\left(\tau^{s+5}\right) \tag{4}
\end{equation*}
$$

\]

(where $Z^{[0]}=Z, Z^{[1]}=f(Z), Z^{[k+1]}=\frac{\partial Z^{[k]}}{\partial Z} Z^{[1]}=Z_{Z}^{[k]} Z^{[1]}$ for $k=1,2, \cdots$ ) with complete formulae for calculation of $A(Z), B(Z), C(Z)$ and $D(Z)$.

Thus, the STO $G^{\tau}$ satisfying equation (3) completely characterizes the LMSM (2) as: $Z_{1}=G^{\tau}\left(Z_{0}\right), \cdots, Z_{m}=G^{\tau}\left(Z_{m-1}\right)=\left[G^{\tau}\right]^{m}\left(Z_{0}\right), \cdots$.

When equation (1) is a hamiltonian system, i.e., $p=2 n$ and $f(Z)=J \nabla H(Z)$, where $J=\left[\begin{array}{cc}0_{n} & -I_{n} \\ I_{n} & 0_{n}\end{array}\right], \nabla$ stands for the gradient operator, and $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{1}$ is a smooth function, (1), (2) and (3) become

$$
\begin{align*}
& \frac{d Z}{d t}=J \nabla H(Z), \quad Z \in \mathbb{R}^{2 n},  \tag{5}\\
& \sum_{k=0}^{m} \alpha_{k} Z_{k}=\tau \sum_{k=0}^{m} \beta_{k} J \nabla H\left(Z_{k}\right) \quad\left(\sum_{k=0}^{m} \beta_{k} \neq 0\right),  \tag{6}\\
& \sum_{k=0}^{m} \alpha_{k} G^{k}=\tau \sum_{k=0}^{m} \beta_{k} J \nabla H \circ G^{k}, \tag{7}
\end{align*}
$$

and we can rewrite

$$
\begin{align*}
Z^{[0]} & =Z, \\
Z^{[1]} & =J \nabla H, \\
Z^{[2]} & =J H_{z z} J \nabla H=Z_{z}^{[1]} Z^{[1]}, \\
Z^{[3]} & =Z_{z^{2}}^{[1]}\left(Z^{[1]}\right)^{2}+Z_{z}^{[1]} Z^{[2]},  \tag{8}\\
Z^{[4]}= & Z_{z^{3}}^{[1]}\left(Z^{[1]}\right)^{3}+3 Z_{z^{2}}^{[1]} Z^{[1]} Z^{[2]}+Z_{z}^{[1]} Z^{[3]}, \\
Z^{[5]}= & Z_{z^{4}}^{[1]}\left(Z^{[1]}\right)^{4}+6 Z_{z^{3}}^{[1]}\left(Z^{[1]}\right)^{2} Z^{[2]}+3 Z_{z^{2}}^{[1]}\left(Z^{[2]}\right)^{2} \\
& +4 Z_{z^{2}}^{[1]} Z^{[1]} Z^{[3]}+Z_{z}^{[1]} Z^{[4]},
\end{align*}
$$

and generally,

$$
Z^{[r+1]}=\sum_{j=1}^{r} \sum_{i_{1}+i_{2}+\cdots+i_{j}=r ; i_{u} \geq 1} \frac{r!}{} \frac{\Omega\left(i_{1}, i_{2}, \cdots, i_{j}\right)}{i_{1}!i_{2}!\cdots i_{j}!} J(\nabla H)_{z j} Z^{\left[i_{1}\right]} Z^{\left[i_{2}\right]} \cdots Z^{\left[i_{j}\right]}
$$

where $i_{1} \leq i_{2} \leq \cdots \leq i_{j}, \Omega\left(i_{1}, i_{2}, \cdots, i_{j}\right)$ is the number of all different permutations of $\left\{i_{1}, i_{2}, \cdots, i_{j}\right\}$, and $(\nabla H)_{z_{j}} Z^{\left[i_{1}\right]} Z^{\left[i_{2}\right]} \cdots Z^{\left[i_{j}\right]}$ stands for the multi-linear form

$$
\sum_{1 \leq t_{1}, \cdots, t_{j} \leq 2 n} \frac{\partial^{j}(\nabla H)}{\partial Z_{\left(t_{1}\right)} \cdots \partial Z_{\left(t_{j}\right)}} Z_{\left(t_{1}\right)}^{\left[i_{1}\right]} \cdots Z_{\left(t_{j}\right)}^{\left[i_{j}\right]},
$$

$Z_{\left(t_{u}\right)}^{\left[i u_{u}\right]}$ stands for the $t_{u}$-th component of the 2 n -dim vector $Z^{\left[i_{u}\right]}$.
The expansion of STO (4) has been used to study the symplecticity of LMSM (refer to [3], [7]), and also the symplecticity of Dahlquist pair (refer to [8]).

[^1]
[^0]:    *Received September 27, 2004

    1) This research is supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences "Supercomputing Environment Construction and Application" (INF105-SCE), and by a grant (No. 10471145) from National Natural Science Foundation of China.
[^1]:    ${ }^{2)}$ More generally, one can use an STO to characterize any DS compatible with ODE (1), and obviously the STO can be written in form (4).

