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Abstract

Taking hm as the mesh width of a curved edge Γm (m = 1, ..., d ) of polygons and using
quadrature rules for weakly singular integrals, this paper presents mechanical quadrature
methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved
polygons, which possess high accuracy O(h3

0) and low computing complexities. Since mul-
tivariate asymptotic expansions of approximate errors with power h3

i (i = 1, 2, ..., d) are
shown, by means of the splitting extrapolations high precision approximations and a pos-
teriori estimate are obtained.
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1. Introduction

Let Ω ⊂ R2 be curved polygons with the edges ∪d
m=1Γm = Γ. Consider plane linear elasticity

Dirichlet problems:
{

Au ≡ µ∆u + (µ + λ)graddivu = 0, in Ω,
u = u0, on Γ,

(1.1)

where u = (u1, u2) is the displacement field, and µ and λ are Lame constants. By using
the single layer potential theory, (1.1) can be converted into the following boundary integral
equation system (BIES) of the first kind[2,3,17,18]

∫

Γ

u∗
ij(y, x)pj(x)dsx = αij(y)u0

j(y) +

∫

Γ

p∗ij(y, x)u0
j(x)dsx, i = 1, 2, ∀y ∈ Γ, (1.2)

where y = (y1,y2), r = |y − x| = [(y1 − x1)
2 + (y2 − x2)

2]1/2; αij(y) is a constant dependent on
y ∈ Γ;

{

u∗
ij = [−(3 − 4ν)(ln r)δij + r,.ir,j ]/[8πµ(1 − ν)],

p∗ij = −[∂r/∂n((1 − 2ν)δij + 2r,ir,j) + (1 − 2ν)(nir,j − njr,i)]/[4π(1 − ν)r]
(1.3)

are Kelvin’s fundamental solutions[2,3]; ν = λ/[2(λ + µ)] is Poisson
′

s ratio; n = (n1, n2) is the
unit outward normal vector on Γ; r,i = ∂r/∂xi and repeated subscript means a summation from
1 to 2. Obviously, the equation (1.2) is a weakly singular boundary integral equation system
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of the first kind. If the traction p = (p1, p2)
T is solved by (1.2), then the displacement vectors

and stress tensor components can be calculated by

ui(y) =

∫

Γ

u∗
ij(y, x)pj(x)dsx −

∫

Γ

p∗ij(y, x)u0
j(x)dsx, ∀y ∈ Ω, (1.4)

σij(y) =

∫

Γ

u∗
ijk(y, x)pk(x)dsx −

∫

Γ

p∗ijk(y, x)u0
k(x)dsx, ∀y ∈ Ω, (1.5)

where






u∗
ijk = [(1 − 2ν)(r,jδki + r,iδkj − r,kδij) + 2r,ir,jr,k)]/[4πµ(1 − ν)r].

p∗ijk = µ/[2π(1 − ν)r2]{2∂r/∂n[(1 − 2ν)δijr,k + ν(δikr,j + δjkr,i) − 4r,ir,jr,k]

+2ν(nir,jr,k + njr,ir,k) + (1 − 2ν)(2nkr,ir,j + δiknj + δjkni) − (1 − 4ν)δijnk}.
(1.6)

Unfortunately, the homogeneous equations corresponding to (1.2) might admit non-trivial
solutions[7,23]. For simplicity, in the paper we assume

d(Ω) = max
x,y∈Γ

|x − y| < 1, (1.7)

which can ensure that the solution of (1.2) is unique (see Remark 1).
So far the numerical methods for solving (1.2) are Galerkin methods[7,22] and collocation

methods [24] based on the projective theory, which have been applied to many engineering
computations and application software. However there exist the following disadvantages: (1)
Since the discrete matrix is full, the generating each element has to calculate an improper
integral for the collocation method or a double improper integral for the Galerkin method,
which implies that the work calculating discrete matrix is so large as greatly to exceed to
solve the discrete equations. (2) The order of accuracy is lower, especially, for concave domain
problems[22,24]. Obviously, using mechanical quadrature methods for solving (1.2) can save
a lot of computations generating the discrete matrix. However, the convergent proof of the
mechanical quadrature methods appears to be some difficulties without the projective theory
as a mathematical tool. So far there are only a few papers to discuss the mechanical quadrature
methods of the second-kind BIE[10]. In the paper, we propose a high accuracy mechanical
quadrature method for solving the first-kind BIES of plane elasticity Dirichlet problems on
curved polygons, which is based on the quadrature rules of the weakly singular periodic functions
and the periodical transformations. Using the methods, we not only get the convergence rate of
approximations, but also prove that the errors of the approximations possess the multivariate
asymptotic expansions with power h3

i (i = 1, 2, ..., d) given mesh widths. Thus as soon as
some discrete equations with respect to some coarse mesh partitions are solved in parallel, the
accuracy order of approximations will be improved by splitting extrapolation methods (SEM).
Moreover, a posteriori asymptotic error estimate as adaptive algorithms is derived.

SEM[11,12,13] based on the multivariate asymptotic expansion of the error is a new extrap-
olation technique to solve large problems in parallel, which possesses a high order of accuracy,
a high degree of parallelism and an almost optimal computational complexity. Since Lin and
Lü published the first paper [12] in 1983, SEM has been applied to many multidimensional
problems,e.g., the multidimensional numerical integrals[11,15], finite differential methods[11] and
finite element methods[11]. Using Galerkin methods, Rüde and Zhou[19] gave SEM for solving
the second kind BIE of Laplace’s equation on polygonal domains. In the paper, SEM is first
applied to solve the first kind BIES of the elasticity problems on curved polygons.

This paper is organized as follows: in Section 2 we derive a new integral equation system of
the first kind with weakly singular kernels under the periodical transformations; in Section 3 the
quadrature method and its convergent proof are given; in Section 4 the multivariate asymptotic
expansions of the errors are derived, and SEM and a posteriori error estimate are got; in Section
5 some numerical examples are shown.
Remark 1. If (1.7) is satisfied, then it is easily verified that the matrix

S =18πµ(1 − ν){−(3 − 4ν) ln r

[

1 0
0 1

]

+

[

r,1r,1 r,1r,2

r,1r,2 r,2r,2

]

}.


