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Abstract

We propose a quadratically convergent algorithm for computing the invariant subspaces

of an Hermitian matrix. Each iteration of the algorithm consists of one matrix-matrix

multiplication and one QR decomposition. We present an accurate convergence analysis

of the algorithm without using the big O notation. We also propose a general framework

based on implicit rational transformations which allows us to make connections with several

existing algorithms and to derive classes of extensions to our basic algorithm with faster

convergence rates. Several numerical examples are given which compare some aspects of

the existing algorithms and the new algorithms.
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1. Introduction

In [15] we proposed a cubically convergent algorithm for computing the two invariant sub-

spaces of an Hermitian matrix A corresponding to the eigenvalues of A inside and outside the

unit interval [−1, 1], respectively. There we also presented a detailed convergence analysis which

proved the cubic convergence of the algorithm. The derivation of the algorithm is inspired by

the work in [1, 2, 3, 4, 6, 10, 11, 12] and the algorithm only uses matrix-matrix multiplications

and QR decompositions as building blocks which are highly parallelizable primitive operations

in libraries such as ScalaPack [14]. In this paper, we continue along the same line of research

and concentrate on deriving new algorithms that can substantially reduce the amount of storage

and the number of matrix-matrix multiplications. By exploiting the symmetry of the eigen-

value problem, we succeeded in deriving a new algorithm that employs only one matrix-matrix

multiplication and one QR decomposition in each iteration. The presentation of the algorithm

is the topic of Section 2. The structure of the new algorithm is extremely simple which allows

us to give a much refined convergence analysis of the algorithm in Section 3. In particular, we

were able to remove all of the big O expressions which were heavily used in [15]. The resulting

bounds are cleaner and more concise. In Section 4, we analyze our proposed algorithm from the

point of view of implicit rational transformations. This approach allows us to propose classes
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of extensions of our basic algorithm which have higher convergence rates. To test the power of

the implicit rational transformation framework, we will derive a simple version of the matrix

sign function scheme from the general framework. We then discuss the relations of our new

algorithms with Algorithm ISDA proposed in [1, 3, 10] and Algorithm Cubic proposed in [15].

We focus on the accuracy of the invariant subspaces that are computed by those algorithms for

a variety of numerical examples.

Remark. We want to emphasize that when the matrix A is non-Hermitian, then all the

algorithms proposed in the sequel can be converted into algorithms for computing the singular

subspaces of A.

2. The Algorithms

Our focus is to derive new algorithms which use as few matrix-matrix multiplications as

possible in each iteration for computing an invariant subspace V(a,b) of an Hermitian matrix

A ∈ Cn×n corresponding to the eigenvalues inside a preassigned interval (a, b).2)

Theoretically, such an invariant subspace of A can be obtained by the following three steps.

First, construct a function f that maps the complement of interval [a, b] to zero and keep the

image of [a, b] far from zero. Second, compute the matrix function f(A). Finally, compute the

range space of f(A) using QR algorithm column-pivoting to obtain the invariant subspace as

required.

However, it is difficult to design such a function explicitly A feasible approach is to construct

a function that has such properties approximately. We consider a sequence of functions {fk}
that converges to an ideal f . One of the approaches for designing fk is that we use a multiple

composite of a fixed function g together with a scaling function ℓ,

fk = g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

◦ℓ ≡ g(k) ◦ ℓ with g(k) = g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

, (2.1)

where the iterative function g should be chosen such that 1) it has two invariant intervals I1
and I2 that cover the real space, i.e., R = I1 ∪ I2, and 2) it shrinks one of the intervals, say I1,

as k increases, i.e., g(k)(I1) → {α} as k → ∞. The scaling function ℓ maps the inside of (a, b)

into I2 and the outside to I1. This approach leads to an iterative method for computing the

invariant subspace as follows.

Basic Iteration for Computing an Invariant Subspace.

1. Initial scaling. Set B0 = ℓ(A).

2. Iteration. For k = 0, . . . , compute Bk+1 = g(Bk) until convergence.

3. Column-pivoting QR. Compute an orthogonal basis matrix of the range space of Bp

for a convergent iterator Bp.

Obviously, Bk = fk(A) with fk defined in (2.1). For ease of computation, the iterative

function g should be chosen such that the matrix function g(A) can be computed easily. In

2) We assume that a and b are not eigenvalues of A.


