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Abstract

In this paper, we consider a hydrodynamic model of the semiconductor device. The

approximate solutions are obtained by a mixed finite volume method for the potential

equation and multistep upwind finite volume methods for the concentration equations.

Error estimates in some discrete norms are derived under some regularity assumptions on

the exact solutions.

Mathematics subject classification: 65N30, 65M25.

Key words: Semiconductor device, Unstructured meshes, Finite volume, Multistep method,

Error estimates.

1. Introduction

Let us consider a system of equations describing the mobil carrier transport in a semicon-

ductor device in a bounded domain Ω ∈ Rd, d = 2, 3:

−∆v = ∇ · u = α[p − e + N(x)], (1.1)

∂e

∂t
= ∇ · [De(x)∇e − µe(x)e∇v] − R1(e, p), (1.2)

∂p

∂t
= ∇ · [Dp(x)∇p + µp(x)p∇v] − R2(e, p). (1.3)

The above system is a hydrodynamic model of the semiconductor device. Three unknowns are

the electrostatic potential v, the electron mobile charge density e, and the hole mobile charge

density p. u = −∇v is the electric intensity. α is a constant related to the magnitude of

electronic charge and the dielectric permittivity. N(x) = ND(x) − NA(x), where ND(x) and

NA(x) denote the donor and acceptor impurity respectively. The diffusion coefficients Ds(x)

(s = e, p) are related to the mobilities µs(x) by the relation Ds(x) = UT µs(x), where UT is the

thermal voltage. The recombination terms Ri(e, p), i = 1, 2 are Lipschitz continuous with the

Lipschitz constant λ. All the coefficients appeared in (1.1)–(1.3) are positive and bounded, and

µs ≥ µ∗ > 0, Ds ≥ D∗ > 0, s = e, p, where µ∗ and D∗ is positive constants.

The equations can be completed by the following initial and boundary conditions

e(x, 0) = e0(x), p(x, 0) = p0(x), (1.4)

v = 0, e = 0, p = 0, x ∈ ∂Ω, t ∈ (0, T ]. (1.5)
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There have existed many works on the numerical solution of the above system. In [5], a

finite difference method was constructed for one or two dimensional cases and the convergence

analysis was given. Numerical procedures based on a mixed finite element method for the

potential equation and finite element methods for the mobile charge density equations were

first presented in [4, 7]. The method was then applied to a mixed initial boundary model

in [12], where under some less smoothness assumptions on the exact solution, a priori error

estimates were obtained. In [13], two kinds of finite element schemes, one being partly linear

and another being nonlinear, were formulated and the existence of the approximate solutions

was proved for both cases. The convergence analysis for the nonlinear scheme was presented in

[14]. Some exponentially converging box methods, named Scharfetter-Gummel methods, were

used in [10] to treat two and three dimensional semiconductor device problems. The stability of

the methods and error estimates for the Slotboom variables are derived. Recently, characteristic

finite element methods have been presented in [11] to avoid nonphysical oscillation and optimal

error estimates were obtained there.

Finite volume method is a discretization tool used extensively in the computations for

conservation laws. The method is suitable in handling general domains, which can keep local

conservation properties of the numerical fluxes. We refer to [3, 6, 8, 9] and the references

therein for some details. In this paper, we study a finite volume method for the semiconductor

devices in multi–dimensions. We use a mixed finite volume method to treat the elliptic equation

(1.1) and upwind finite volume methods to treat the convection–diffusion Eqs. (1.2)-(1.3). A

multistep time discretization is considered to enhance the accuracy in temporal direction. Under

the assumption that the exact solutions possess enough regularity we derive the optimal error

estimates in discrete norms for the scheme.

The rest of the paper is organized as follows. In Section 2, we introduce the admissible

meshes and some necessary notation. Section 3 is devoted to formulating a fully discrete finite

volume scheme for Eqs. (1.1)-(1.5). In Section 4, we derive the priori error estimates for the

finite volume scheme under some regularity assumptions on the exact solutions.

Throughout this paper, we use C and ǫ to denote a general positive constant and a general

positive small constant, respectively, not necessarily the same in different places.

2. Meshes and Notations

Definition 2.1. (Admissible meshes) An admissible mesh Th of Ω is given by a family of

control volumes, which are open polygonal (or polyhedral) subsets of Ω. A family E of subsets

of Ω contained in hyper-planes of Rd with strictly positive measure (the edges of the mesh), and

a family of discrete points in Ω satisfying the following properties:

1. The closure of the union of all control volumes is Ω.

2. For any K ∈ Th, there exists a subset EK ⊆ E, such that ∂K = K\K = ∪σ∈EK
σ.

Furthermore, E = ∪K∈Th
EK .

3. For any (K, L) ∈ T 2
h with K 6= L, either K ∩ L = 0 or K ∩ L = σ. Then, we denote by

σ = K|L.

4. The family of discrete points
{

xK

}

K∈Th
is such that xK ∈ K and, if σ = K|L, it is

assumed that the straight line xKxL is orthogonal to σ.

Let h denote the space step of the mesh Th. For any K ∈ Th and σ ∈ E , we denote by m(K)

the measure of K and m(σ) the measure of the edge σ. If σ ∈ EK , we denote dK,σ the Euclidean


