EDGE-ORIENTED HEXAGONAL ELEMENTS *1)

Chao Yang and Jiachang Sun
(Parallel Computing Lab., Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
Email: yc@mail.rdcps.ac.cn, sun@mail.rdcps.ac.cn)

Abstract

In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space $Q_{1}^{(3)}$ and are edge-oriented, analogical to the case of the rotated Q_{1} quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L^{2} norm. This theoretical result is confirmed by the numerical tests.

Mathematics subject classification: 65N15, 65N30.
Key words: Nonconforming finite element method, Hexagonal element, Q_{1} element.

1. Introduction

The finite element method (FEM) is a powerful tool, which can be easily applied to a large variety of engineering applications. In two dimensions, classical FEMs often treat meshes consisting of triangles, quadrilaterals, etc. While as is well-known, hexagons also extensively exist in the nature as well as in some special application fields, such as in material sciences and nuclear engineering [3, 12, 13]. Moreover, besides triangles and quadrilaterals, only hexagons can form a regular tessellation of the plane [4], which inspires us to consider hexagonal elements.

Noticing that a bivariate quadratic polynomial has six degree of freedoms, one may ask whether the six vertices of a hexagon exactly determine a bivariate quadratic polynomial. Unfortunately, the resulting equation is not unisolvable in general, since the six vertices of the regular hexagon belong to a same quadratic curve, a circle. To construct conforming hexagonal elements avoiding polynomial spaces, some works based on rational function spaces have been carried out in $[10,12,13,17]$. Moreover, while the nonconforming triangular and quadrilateral elements are well studied, see, e.g., $[7,11,14,15,16]$, their hexagonal counterparts are less complete. This motivates us to study nonconforming hexagonal elements.

The main goal of this paper is to generalize the quadrilateral rotated Q_{1} element [14] to the hexagonal case. We use the so-called three-directional coordinates [18] to explore the symmetry of a hexagon. Two new elements are constructed, both of which are based on trilinear function space $Q_{1}^{(3)}$ and are edge-oriented. The modified version has an extra degree of freedom on the element face, which is similar to the five-node element proposed by Han in [11]. Optimal order error estimates are given with respect to the energy norm and the L^{2} norm. Numerical experiments are presented to demonstrate the accuracy of the proposed method.

Before the end of this section, we recall some notations (or refer to [1, 2]). Let (\cdot, \cdot) denote the L^{2} inner product and $\|\cdot\|_{H^{p}(\Omega)}$ (resp. $\left.|\cdot|_{H^{p}(\Omega)}\right)$ be the norm (resp. semi-norm) for the Sobolev space $H^{p}(\Omega)$.

[^0]
2. Nonconforming Hexagonal Element

To begin, we introduce the three-directional coordinates with which the symmetries of a regular hexagon \widehat{H} could be well embodied. As is well-known, under Cartesian coordinates, a plane can be viewed as $\left\{\left(t_{1}, t_{2}, t_{3}\right) \mid t_{3}=0\right\}$ in the space. While under the three-directional coordinates, the plane $S=\left\{\left(t_{1}, t_{2}, t_{3}\right) \mid t_{1}+t_{2}+t_{3}=0\right\}$ are studied. For more details, we refer to [18]. Thus any point in the plane S can be represented by a coordinates triple $\left(t_{1}, t_{2}, t_{3}\right)$ with $t_{1}+t_{2}+t_{3}=0$. A natural coordinates transform between Cartesian coordinates and three-directional coordinates can be

$$
\left\{\begin{array} { l }
{ \xi = \frac { 1 } { 2 } (t _ { 3 } - t _ { 2 }) , } \\
{ \eta = \frac { \sqrt { 3 } } { 2 } t _ { 1 } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
t_{1}=\frac{2}{\sqrt{3}} \eta \\
t_{2}=-\xi-\frac{1}{\sqrt{3}} \eta \\
t_{3}=\xi-\frac{1}{\sqrt{3}} \eta
\end{array}\right.\right.
$$

Fig. 2.1. Getting a regular hexagon from a unit-cube.

We let $B=\left\{\left(t_{1}, t_{2}, t_{3}\right) \mid-1<t_{1}, t_{2}, t_{3}<1\right\}$ be a box domain in the space. Then as illustrated in Fig. 2.1, the regular hexagon \widehat{H} can be easily obtained by letting $\widehat{H}=B \cap S$. Denote the trilinear space over \widehat{H} as

$$
Q_{1}^{(3)}(\widehat{H})=\operatorname{span}\left\{1, t_{1}, t_{2}, t_{3}, t_{2} t_{3}, t_{3} t_{1}, t_{1} t_{2}, t_{1} t_{2} t_{3}\right\}
$$

obviously we have $\operatorname{dim}\left(Q_{1}^{(3)}(\widehat{H})\right)=2^{3}-1=7$.
We refer symmetric parallel hexagons as an affine-equivalence class of the regular hexagon. For a symmetric parallel hexagon, any two opposite sides are parallel and the three main diagonals meet at one symmetric point, see Fig. 2.2.

For simplicity, assume that Ω is a polygon domain and \mathcal{T}_{h} be a decomposition of Ω consisted by symmetric parallel hexagons and triangles, where $h=\max _{K \in \mathcal{T}_{h}} \operatorname{diam} K$. By $\partial \mathcal{T}_{h}$ we denote the set of all edges F of the element $K \in \mathcal{T}_{h}$. Assume \mathcal{T}_{h} satisfies the usual "quasi-uniform" condition [1, 2]. Accordingly, the generic constant C used below is always independent of h. We take the unit regular hexagon \widehat{H} and the unit equilateral triangle \widehat{T} as the reference element. For any $K \in \mathcal{T}_{h}$, there exists a unique and invertible affine map $F_{K}: \widehat{K} \rightarrow K, F_{K}=B_{K} \widehat{x}+b_{K}:=x$, where \widehat{K} could be \widehat{H} or \widehat{T}.

[^0]: * Received July 3, 2006; final revised August 14, 2006; accepted December 5, 2006.

 1) The research is supported by National Basic Research Program of China (No. 2005CB321702) and National Natural Science Foundation of China (No. 10431050).
