EDGE-ORIENTED HEXAGONAL ELEMENTS *1)

Chao Yang and Jiachang Sun

(Parallel Computing Lab., Institute of Software, Chinese Academy of Sciences, Beijing 100080, China Email: yc@mail.rdcps.ac.cn, sun@mail.rdcps.ac.cn)

Abstract

In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space $Q_1^{(3)}$ and are edge-oriented, analogical to the case of the rotated Q_1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L^2 norm. This theoretical result is confirmed by the numerical tests.

Mathematics subject classification: 65N15, 65N30. Key words: Nonconforming finite element method, Hexagonal element, Q_1 element.

1. Introduction

The finite element method (FEM) is a powerful tool, which can be easily applied to a large variety of engineering applications. In two dimensions, classical FEMs often treat meshes consisting of triangles, quadrilaterals, etc. While as is well-known, hexagons also extensively exist in the nature as well as in some special application fields, such as in material sciences and nuclear engineering [3, 12, 13]. Moreover, besides triangles and quadrilaterals, only hexagons can form a regular tessellation of the plane [4], which inspires us to consider hexagonal elements.

Noticing that a bivariate quadratic polynomial has six degree of freedoms, one may ask whether the six vertices of a hexagon exactly determine a bivariate quadratic polynomial. Unfortunately, the resulting equation is not unisolvable in general, since the six vertices of the regular hexagon belong to a same quadratic curve, a circle. To construct conforming hexagonal elements avoiding polynomial spaces, some works based on rational function spaces have been carried out in [10, 12, 13, 17]. Moreover, while the nonconforming triangular and quadrilateral elements are well studied, see, e.g., [7, 11, 14, 15, 16], their hexagonal counterparts are less complete. This motivates us to study nonconforming hexagonal elements.

The main goal of this paper is to generalize the quadrilateral rotated Q_1 element [14] to the hexagonal case. We use the so-called three-directional coordinates [18] to explore the symmetry of a hexagon. Two new elements are constructed, both of which are based on trilinear function space $Q_1^{(3)}$ and are edge-oriented. The modified version has an extra degree of freedom on the element face, which is similar to the five-node element proposed by Han in [11]. Optimal order error estimates are given with respect to the energy norm and the L^2 norm. Numerical experiments are presented to demonstrate the accuracy of the proposed method.

Before the end of this section, we recall some notations (or refer to [1, 2]). Let (\cdot, \cdot) denote the L^2 inner product and $||\cdot||_{H^p(\Omega)}$ (resp. $|\cdot|_{H^p(\Omega)}$) be the norm (resp. semi-norm) for the Sobolev space $H^p(\Omega)$.

^{*} Received July 3, 2006; final revised August 14, 2006; accepted December 5, 2006.

¹⁾ The research is supported by National Basic Research Program of China (No. 2005CB321702) and National Natural Science Foundation of China (No. 10431050).

2. Nonconforming Hexagonal Element

To begin, we introduce the three-directional coordinates with which the symmetries of a regular hexagon \hat{H} could be well embodied. As is well-known, under Cartesian coordinates, a plane can be viewed as $\{(t_1, t_2, t_3) \mid t_3 = 0\}$ in the space. While under the three-directional coordinates, the plane $S = \{(t_1, t_2, t_3) \mid t_1 + t_2 + t_3 = 0\}$ are studied. For more details, we refer to [18]. Thus any point in the plane S can be represented by a coordinates triple (t_1, t_2, t_3) with $t_1 + t_2 + t_3 = 0$. A natural coordinates transform between Cartesian coordinates and three-directional coordinates can be

Fig. 2.1. Getting a regular hexagon from a unit-cube.

We let $B = \{(t_1, t_2, t_3) \mid -1 < t_1, t_2, t_3 < 1\}$ be a box domain in the space. Then as illustrated in Fig. 2.1, the regular hexagon \hat{H} can be easily obtained by letting $\hat{H} = B \cap S$. Denote the trilinear space over \hat{H} as

$$Q_1^{(3)}(\widehat{H}) = \operatorname{span}\{1, t_1, t_2, t_3, t_2t_3, t_3t_1, t_1t_2, t_1t_2t_3\};$$

obviously we have $\dim(Q_1^{(3)}(\widehat{H})) = 2^3 - 1 = 7.$

We refer symmetric parallel hexagons as an affine-equivalence class of the regular hexagon. For a symmetric parallel hexagon, any two opposite sides are parallel and the three main diagonals meet at one symmetric point, see Fig. 2.2.

For simplicity, assume that Ω is a polygon domain and \mathcal{T}_h be a decomposition of Ω consisted by symmetric parallel hexagons and triangles, where $h = \max_{K \in \mathcal{T}_h} \operatorname{diam} K$. By $\partial \mathcal{T}_h$ we denote the set of all edges F of the element $K \in \mathcal{T}_h$. Assume \mathcal{T}_h satisfies the usual "quasi-uniform" condition [1, 2]. Accordingly, the generic constant C used below is always independent of h. We take the unit regular hexagon \hat{H} and the unit equilateral triangle \hat{T} as the reference element. For any $K \in \mathcal{T}_h$, there exists a unique and invertible affine map $F_K : \hat{K} \to K$, $F_K = B_K \hat{x} + b_K := x$, where \hat{K} could be \hat{H} or \hat{T} .