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Abstract

For a photonic crystal (PhC) of finite size, it is important to calculate its transmission

and reflection spectra. For two-dimensional (2-D) PhCs composed of a square lattice of

circular cylinders, the problem can be solved by an efficient method based on the Dirichlet-

to-Neumann (DtN) map of the unit cell and a marching scheme using a pair of operators.

In this paper, the DtN operator marching method is extended to handle 2-D PhCs with

complex unit cells and arbitrary lattice structures.
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1. Introduction

In recent years, photonic crystals (PhCs) have attracted much attention due to their unusual

ability to manipulate light [1]. Many applications of PhCs have been proposed and realized in

experiments. Numerical simulations are essential to understand the basic properties of PhCs

and to design and optimize related components and devices. PhCs give rise to a number of

interesting and challenging mathematical problems. For an infinite PhC, it is important to

calculate its band structure. For PhCs with point defects and line defects, it is necessary to

calculate the defect modes. If the PhC is finite in one direction, we need to solve a scattering

problem for each given incident wave. The more general PhC structures, such as waveguide

bends and branches, give rise to challenging boundary value problems.

One important problem is to analyze the transmission and reflection of a given plane wave

incident upon a PhC of finite size. This problem is usually studied for many frequencies to

produce the transmission and reflection spectra. Existing numerical methods developed for

diffraction gratings, such as the Fourier modal method [2-7] and the finite element method

[8], can be used to solve this problem. Special methods that take advantage of the geometric

simplicity of PhCs are often more efficient. The multipole method [9-14] is a semi-analytic

method suitable for PhCs composed of a lattice of circular cylinders. The boundary integral

equation method [15] also has some advantages, since it only solves the wave field on surfaces

of the cylinders. To take advantage of the partial periodicity in the direction where the PhC

is finite, the scattering matrix formalism [10] and Floquet mode expansions [12, 13] can be

used. In a recent paper [16], we developed a Dirichlet-to-Neumann (DtN) operator marching

method for two-dimensional (2-D) PhCs composed of a square (or rectangular) lattice of circular
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cylinders. The method takes full advantage of the geometric simplicity of a typical PhC. It uses

a cylindrical wave expansion to construct the DtN map of the unit cell and to march two

operators from one side of the PhC to another. A discretization in the unit cell is completely

avoided. Compared with the multipole and the boundary integral equation methods, the DtN

marching method is simpler, since it does not need sophisticated lattice sums techniques.

In this paper, we extend the DtN operator marching method to 2-D PhCs with general lattice

structures and complex unit cells. By a complex unit cell, we refer to a unit cell containing

more than one possibly different cylinders. While a complex unit cell can be divided into a few

sub-cells each containing only one cylinder, the PhC is not periodic on the scale of the sub-cells.

The additional freedom associated with different types of sub-cells can be used to design new

devices, such as the photonic crystal resonator arrays in [17]. For PhCs with complex unit cells,

we develop a merging technique that computes the DtN map of the complex unit cell from the

DtN maps of its sub-cells. We also develop a shifting strategy for arbitrary 2-D lattices. The

method works particularly well for the important case of triangular lattices. The efficiency and

accuracy of our method are illustrated by a number of numerical examples.

2. The DtN Operator Marching Method

We consider a two-dimensional (2-D) photonic crystal (PhC) that is infinite in the x-direction

and finite in the y-direction. The structure is periodic in x with period L and limited in y for

0 < y < D, where D is the width of the PhC. For y < 0 (the bottom) and y > D (the top), we

assume that the medium is homogeneous with constant refractive index nb and n0, respectively.

For an incident wave given in y > D, the scattering problem is to calculate the reflected wave

in y > D and the transmitted wave in y < 0.

For the E-polarization, the z-component of the time-harmonic electric field, denoted by u

in this paper, satisfies the following Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ k2

0n
2 u = 0, (2.1)

where n = n(x, y) is the refractive index function and k0 is the free space wavenumber. For a

plane incident wave, the scattering problem can be formulated as a boundary value problem of

Eq. (2.1) in the rectangular domain given by 0 < x < L and 0 < y < D. For y > D, we have

u = u(r) + u(i), where u(i) and u(r) are the incident and reflected waves given by

u(i)(x, y) = ei[α0x−β0(y−D)], u(r)(x, y) =
∞
∑

j=−∞

Rje
i[αjx+βj(y−D)], y > D, (2.2)

where β0 is positive and Rj is an unknown reflection coefficient. If we denote θ0 the angle

between the wave vector (α0,−β0) and the y-axis, then

α0 = k0n0 sin θ0, β0 = k0n0 cos θ0, αj = α0 +
2jπ

L
, βj =

√

k2
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2
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j .

For y < 0, we have only a transmitted wave given by

u = u(t)(x, y) =

∞
∑

j=−∞

Tje
i[αjx−γjy], for y < 0 and γj =

√

k2
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j ,


