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Abstract

In this paper, we give the state of the art for the so called “mixed spectral elements”

for Maxwell’s equations. Several families of elements, such as edge elements and discon-

tinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the

need of introducing some numerical dissipation terms to avoid spurious modes in these

methods. Such terms are classical for DGM but their use for edge element methods is a

novel approach described in this paper. Finally, numerical experiments show the fast and

low-cost character of these elements.
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1. Introduction

For a long time, Maxwell’s equations were mainly solved in the time-harmonic domain.

The evolution of radar techniques showed the limit of this formulation which can only treat

monochromatic sources. Both engineers and researchers were then motivated to use equations

in the time domain which can take into account large frequency sources in one resolution. The

first and most popular approximation of Maxwell’s equations in the time domain was provided

by the Yee’s scheme [29], commonly called FDTD (Finite Difference in the Time Domain) by

engineers, which is basically a centered second order finite difference approximation of Maxwell’s

equation.

Although easy to implement, FDTD has some difficulties to treat complex geometries. In

fact, the staircase approximation of curved boundary can produce spurious reflections which

can substantially pollute the solution. On the other hand, finite element methods (FETD)

have the major drawback of producing a n-diagonal (n can grow up to several tens in 3D)

mass matrix which must be inverted at each time-step, which is a serious handicap for FETD

versus FDTD whose mass matrix is the identity matrix. This mass matrix does not present

any difficulty to time harmonic problems, for which even the stiffness matrix must be inverted.

For this reason, industry was reluctant to use FETD for a long time and FDTD remains the

reference for Maxwell’s equations in the time domain for 40 years!

The mass lumping technique is an efficient alternative to mass matrix inversion. However,

this technique was well known for lower order continuous (or H1) elements but not obvious

for higher-order approximations. A first step towards a general mass lumping technique was

made by Hennart et al. [19,20] and independently by Young [30] which proposed to use Gauss-

Lobatto quadrature formulas to get mass lumping for continuous quadrilateral or hexahedral
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finite elements. Besides mass lumping, these formulas ensure to keep the order induced by

the finite element approximation [3]. First introduced for ODE or parabolic problems, this

technique was extended to the wave equation by Cohen et al. [11] and renamed spectral element

methods [22]. The non trivial extension of this technique to triangular and tetrahedral elements

was later realized by Cohen et al. [10] for triangles up to third order and Mulder et al. [23] for

higher-order triangles and tetrahedra.

The problem of the mass matrix inversion was solved for the wave equation and remained a

challenging problem for Maxwell’s equations. A first try was done by Haugazeau et al. [18] but

this approach remains restricted to first-order approximation. A second and natural step was

to extend spectral element techniques to edge (or H(curl)) elements. This was done by Cohen

et al. for orthogonal meshes for the first family [12] and for any mesh for the second family

of edge elements of any order [13]. The extension to triangular and tetrahedral meshes was

realized by Elmkies et al. [16, 17] but lead to efficient approximations up to the second-order

elements.

Due to the storage of the stiffness matrix, even by using mass lumping techniques, FETD

remained much more expensive than FDTD in terms of storage and, to a lesser extent, in

computational time. This ultimate problem was solved by using a mixed H(curl) − L2 formu-

lation of Maxwell’s equations based on H(curl)-conform definition of the curl operator in both

spaces [13]. This technique provides a local definition of the stiffness matrices which induces a

substantial gain of storage. It was later extended to acoustics [6] and linear elastodynamics [7].

A detailed presentation of all these techniques can be found in [5].

Unfortunately, although H1 spectral elements and H1 and H(curl) triangular and tetra-

hedral elements behave quite well for any mesh, H(curl) spectral elements present important

parasitic waves for very distorted meshes, which are often used in industrial problems. For

this reason, discontinuous Galerkin methods appeared as an efficient alternative for Maxwell’s

equations. First introduced by Hesthaven [21] for tetrahedra, this approach was adapted by

Cohen et al. [9] to the spectral element point of view, which provided a low-storage as well

as fast method to solve Maxwell’s equations. This approach seemed to deal better with para-

sitic waves but eigenvalues considerations showed that such waves were however present in this

method. All these remarks motivated us to discuss the numerical dissipation terms which can

attenuate parasitic waves. This discussion is the new part of our survey.

Our paper is divided into four parts. In a first section, we present the continuous formula-

tions of the Maxwell’s equations and different approaches for its approximation. In the second

section, we discuss the parasitic modes through an eigenvalue analysis. In the third section, we

introduce dissipative jump terms to get rid of parasitic modes. The last section is devoted to

the approximation of the time-harmonic problem by the methods described in the first section.

Finally, some numerical experiments are presented.

2. Different Approximations of the Problem

2.1. Formulations of the continuous problem

In this paper, we are interested in solving the so-called lossy Maxwell’s equations in anisotropic

media which read


