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Abstract

In this paper, a nonmonotone method based on McCormick’s second-order Armijo’s
step-size rule [7] for unconstrained optimization problems is proposed. Every limit point
of the sequence generated by using this procedure is proved to be a stationary point with
the second-order optimality conditions. Numerical tests on a set of standard test problems
are presented and show that the new algorithm is efficient and robust.
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1. Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f(x) is a real-valued twice continuously differentiable function.
There are two classes of basic global approaches to solve problem (1.1): the line search

method and the trust region method. Most of these methods naturally require monotone
decrease of the objective values to guarantee the global convergence. However, this usually
slows the convergence rate of the minimization process, especially in the presence of steep-sided
valleys. Recently, several algorithms with nonmonotone techniques have been proposed both in
line search methods [5, 6, 11, 16], and trust region methods [3, 4, 10, 15]. Theoretical properties
and numerical tests show that the nonmonotone techniques are efficient and competitive [12].

In [7] McCormick modified Armijo’s rule and proposed a second-order Armijo’s step-size
rule, which includes second-order derivative information in the line-search. Using directions
of negative curvature, this method can handle the cases where the Hessian matrices are not
positive definite, so that the sequence generated by this method converges to a second-order
stationary point.

Nonmonotone techniques now are proved to be popular and efficient to deal with opti-
mization problems, especially for ill-conditioned optimization problems. In this paper, we will
combine the nonmonotone technique with the second-order Armijo’s step-size rule to form a
nonmonotone version of the second-order steplength method for unconstrained minimization.
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We first introduce some standard notations used throughout our paper:
1. The notation ‖ · ‖ denotes the Euclidean norm on Rn.
2. g(x) ∈ Rn is the gradient of f(x) evaluated at x, and H(x) ∈ Rn×n is the Hessian of

f(x) at x.
3. If {xk} is a sequence of points generated by an algorithm, we denote fk = f(xk), gk =

g(xk) and Hk = H(xk).
4. λmin(·) stands for the minimal eigenvalue of a matrix.
This paper is organized as follows. In section 2, we describe a nonmonotone algorithm

model with the second-order steplength rule and discuss how to determine the descent pair. In
section 3 we prove the global convergence which establishes that each limit point of the sequence
generated from our algorithm is the second-order stationary point. The numerical results by
solving a set of standard test problems are presented in section 4. Finally, in section 5, we give
the conclusions.

2. The Nonmonotone Second-order Steplength Method

First of all, we give the definitions of the indefinite point and the descent pair.

Definition 2.1. A point x is an indefinite point if H(x) has at least one negative eigenvalue.
Further, if x is an indefinite point, then d is a direction of negative curvature if dT H(x)d < 0.

Definition 2.2. If sT g(x) ≤ 0, dT g(x) ≤ 0, dT H(x)d < 0, then (s, d) is called a descent pair at
the indefinite point x; if x is not an indefinite point and sT g(x) < 0, dT g(x) ≤ 0, dT H(x)d = 0,
then (s, d) is called a descent pair with zero curvature direction.

Obviously, when H(x) is positive definite, d must be a zero vector and we only need to
consider the descent direction s.

MoCormick’s second-order Armijo’s step rule is to find the smallest nonnegative integer i(k)
from 0, 1, · · ·, when Hk is indefinite, such that

f(yk(i)) − f(xk) ≤ ρ2−i(sT
k gk +

1
2
dT

k Hkdk), (2.1)

where

yk(i) = xk + sk2−i + dk2−i/2, (2.2)

0 < ρ < 1 is a preassigned constant and (sk, dk) is a descent pair. Then set

xk+1 = yk(i(k)).

In fact, no matter whether Hk is indefinite or not, we can use the rule (2.1) in every iteration
because we can let dk be a zero vector whenever Hk is positive definite. Clearly, when Hk is
positive definite, the second-order step-size rule (2.1) is reduced to the classical Armijo’s step
rule. In the following, we will assume that the rule (2.1) is used in every iteration.

In order to satisfy (2.1) for a finite integer i(k), it is sufficient that

sT
k gk < 0

whenever gk �= 0, and
dT

k Hkdk < 0

whenever gk = 0. Such a descent pair (sk, dk) does not exist only when xk is a second-order
stationary point. In this case the algorithm will be terminated.

In [7], it is supposed that the second-order step-size rule is used in conjunction with a non-
ascent algorithm. In fact, this is not necessary, and it may cause severe loss of efficiency. We
can relax the accepting condition on yk(i). Let

f(xl(k)) = max
0≤j≤m(k)

f(xk−j), (2.3)


